Vol. 13
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-04-26
A Broadband Dual-Inflection Point RF Predistortion Linearizer Using Backward Reflection Topology
By
Progress In Electromagnetics Research C, Vol. 13, 121-134, 2010
Abstract
This paper presents a flexible and generic broadband RF predistortion linearizer designed using backward reflection topology that can correct for the dualinflection point type compression characteristics usually encountered in the gain profile of metal semiconductor field effect transistor (MESFET) based power amplifiers. It employs circuit configuration of two parallel Schottky diodes with one p-intrinsic-n (PIN) diode in parallel, connected at two ports of a 90°hybrid coupler. The Schottky diodes are coupled via a quarter wave transmission line segment which generates dual inflection points in the gain characteristics of the linearizer. The incorporation of a PIN diode helps in improving the achievable range in the gain and phase characteristics of the linearizer. Overall, the linearizer is capable of linearizing various types of power amplifiers owing to the flexible control on the linearizer's parameters and eventually the gain and phase characteristics of the linearizer. The proposed linearizer can be employed in the frequency range of 1.4-2.8 GHz and can simultaneously improve the third- and fifth-order intermodulation distortions. The measurements carried out on a commercial ZHL-4240 gallium arsenide field effect transistor (GaAs FET) based power amplifier demonstrates the broadband functionality of the proposed linearizer.
Citation
Mohammad S. Hashmi, Zaharia S. Rogojan, S. R. Nazifi, and Fadhel M. Ghannouchi, "A Broadband Dual-Inflection Point RF Predistortion Linearizer Using Backward Reflection Topology," Progress In Electromagnetics Research C, Vol. 13, 121-134, 2010.
doi:10.2528/PIERC10032801
References

1. Helaoui, M. and F. M. Ghannouchi, "Linearization of power amplifiers using the reverse mm-linc technique," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 57, No. 1, 6-10, January 2010.
doi:10.1109/TCSII.2009.2037255

2. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Synergetic crest factor reduction and baseband digital predistor-tion for adaptive 3G Doherty power amplifier linearizer design," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 11, 2602-2608, November 2008.
doi:10.1109/TMTT.2008.2004899

3. Kim, J., Y. Y. Woo, J. Cha, S. Hong, I. L. Kim, J. Moon, J. Kim, and B. Kim, "Analog predistortion of high power amplifier using novel low memory matching topology," Journal of the Korea Electromagnetic Engineering Society, Vol. 7, No. 4, 146-153, December 2007.

4. Kursu, O., M. Riikola, J. Aikio, and T. Rahkonen, "Polynomial 2.1 GHz RF Predistorter with envelope injection output," Springer Analog Integrated Circuit and Signal Processing, Vol. 50, No. 1, 13-20, January 2007.
doi:10.1007/s10470-006-9155-9

5. Teikari, I., J. Vankka, and K. Halonen, "Digitally controlled RF predistortion with digital predictor for feedforward delay compensation," IEEE MTT-S Int. Microwave Symp. Digest, 2043-2046, Long Beach, CA, May 2005.

6. Zhao, G., F. M. Ghannouchi, F. Beauregard, and A. B. Kouki, "Digital implementations of adaptive feedforward amplifier linearization techniques," IEEE MTT-S International Microwave Symposium, Vol. 2, No. 2, 543-546, June 1996.

7. Eid, E. E. and F. M. Ghannouchi, "Adaptive nulling loop control for 1.7-GHz feedforward linearization systems," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 83-86, January 1997.
doi:10.1109/22.552035

8. Nakayama, M., K. Mori, K. Yamauchi, Y. Itoh, and T. Takagi, "A novel amplitude and phase linearizing technique for microwave power amplifiers ," IEEE MTT-S Int. Microwave Symp. Digest, 1451-1454, Orlando, FL, May 1995.

9. Yamauchi, K., K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui, and O. Ishida, "A novel series diode linearizer for mobile radio power amplifiers," IEEE MTT-S International Microwave Symposium Digest , 831-834, 1996.

10. Yamauchi, K., K. Mori, M. Nakayama, Y. Mitsui, and T. Takagi, "A microwave miniaturized linearizer using a parallel diode with a bias feed resistance," IEEE Trans. on Microw. Theory Tech., Vol. 45, No. 12, 2431-2435, December 1997.
doi:10.1109/22.643856

11. Park, C.-W., F. Beauregard, G. Carangelo, and F. M. Ghannouchi, "An independently controllable AM/AM and AM/PM predistortion linearizer for CDMA2000 multi-carrier applications," IEEE MTT-S Int. Microwave Symp. Digest, 53-56, Phoenix, May 2001.

12. Ghannouchi, F. M. and J. S. Cardinal, "A new adaptive double envelope feedback linearizer for mobile radio power amplifiers," IEEE MTT-S Int. Microwave Symp. Digest, 573-576, San Diego, May 1994.

13. Gupta, N., A. Tombak, and A. Mortazawi, "A predistortion linearizer using a tunable resonator," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 9, 431-433, September 2004.
doi:10.1109/LMWC.2004.832073

14. Katz, A., "Linearization: Reducing distortion in power amplifiers," IEEE Microwave, Vol. 2, 37-49, December 2001.
doi:10.1109/6668.969934

15. Ma, H. and Q. Feng, "An improved design of feed-forward power amplifier," PIERS Online, Vol. 3, No. 4, 363-367, 2007.
doi:10.2529/PIERS060817033556

16. Hau, G., T. B. Nishimura, and N. Iwata, "A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions," IEEE Trans. Microw. Theory Tech., Vol. 49, 1194-1120, June 2001.
doi:10.1109/22.925522

17. Suematsu, N., T. Takeda, A. Lida, and S. Urasaki, "A predistortion type equipath linearizer in Ku-band," Proc. 3rd Asia Paci¯c Microwave Conf., 1077-1088, Tokyo, September 1990.

18. Boulejfen, N., A. Harguem, and F. M. Ghannouchi, "New closed-form expressions for the prediction of multitone intermodulation distortion in fifth-order nonlinear RF circuits/systems," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 121-132, January 2004.
doi:10.1109/TMTT.2003.821259

19. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-in°ection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.