Vol. 23
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-16
SiGe Hbt Dual-Conversion Weaver-Hartley Downconverters with High Image Rejection
By
Progress In Electromagnetics Research C, Vol. 23, 175-190, 2011
Abstract
2.4/5.7-GHz dual-band Weaver-Hartley dual-conversion downconverters are demonstrated using 0.35-μm SiGe heterojunction bipolar transistor (HBT) technology with/without a correlated local oscillator (LO) generator. In the first implementation, the correlated LO generator consists of a divide-by-two frequency divider, a frequency doubler and a single-sideband upconverter and thus LO1(=2.5×LO2) signal is generated. As a result, the downconverter with the correlated LO signals has over 39 dB image-rejection ratios for the first/second image signals (IRR1/IRR2) of the dual-conversion system at both 2.4/5.7-GHz modes while the downconverter without the correlated LO generators has a 6-dB higher conversion gain and IRR1/IRR2 of more than 44 dB with the same dc power consumption (excluding the LO generator). On the other hand, a 10-GHz Weaver-Hartley downconverter is demonstrated with a resonant LC load at the first-stage mixer to improve the conversion gain at high frequencies. The downconverter achieves a conversion gain of 8 dB with IRR1/IRR2 better than 43/40 dB.
Citation
Jin-Siang Syu, Chinchun Meng, Sheng-Wen Yu, and Ya-Hui Teng, "SiGe Hbt Dual-Conversion Weaver-Hartley Downconverters with High Image Rejection," Progress In Electromagnetics Research C, Vol. 23, 175-190, 2011.
doi:10.2528/PIERC11062903
References

1. Behzad, A., et al. "A fully integrated MIMO multiband direct conversion CMOS transceiver for WLAN applications (802.11n)," IEEE J. Solid-state Circuits, Vol. 42, No. 12, 2795-2808, Dec. 2007.
doi:10.1109/JSSC.2007.908667

2. Zargari, M., et al. "A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN," IEEE J. Solid-state Circuits, Vol. 39, No. 12, 2239-2249, 2004.
doi:10.1109/JSSC.2004.836349

3. Hashemi, H. and A. Hajimiri, "Concurrent multiband low-noise amplifiers --- Theory, design, and applications," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, 288-301, Jan. 2002.
doi:10.1109/22.981282

4. Ahola, R., et al. "A single-chip CMOS transceiver for 802.11a/b/g wireless LANs ," IEEE J. Solid-state Circuits, Vol. 39, No. 12, 2250-2258, 2004.
doi:10.1109/JSSC.2004.836334

5. Wu, S. and B. Razavi, "A 900-MHz/1.8-GHz CMOS receiver for dual-band applications," IEEE J. Solid-state Circuits, Vol. 33, No. 12, 2178-2185, 1998.
doi:10.1109/4.735702

6. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.

7. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

8. Abidi, A. A., "Direct-conversion radio transceivers for digital communications," IEEE J. Solid-state Circuits, Vol. 30, No. 12, 1399-1410, 1995.
doi:10.1109/4.482187

9. Elahi, I. and K. Muhammad, "Asymmetric DC offsets and IIP2 in the presence of LO leakage in a wireless receiver," RFIC Symp. Dig. Papers, 313-316, 2002.

10. Fang, S. J., A. Bellaouar, S. T. Lee, and D. J. Allstot, "An image-rejection downconverter for low-IF receivers," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 2, 478-487, 2005.
doi:10.1109/TMTT.2004.840759

11. Wu, C.-Y. and C.-Y. Chou, "A 5-GHz CMOS double-quadrature receiver front-end with single-stage quadrature generator," IEEE J. Solid-state Circuits, Vol. 39, No. 3, 519-521, 2004.
doi:10.1109/JSSC.2003.822779

12. Tadjpour, S., E. Cijvat, E. Hegazi, and A. A. Abidi, "A 900-MHz dual-conversion low-IF GSM receiver in 0.35-μm CMOS," IEEE J. Solid-state Circuits, Vol. 36, No. 12, 1992-2002, 2001.
doi:10.1109/4.972150

13. Behbahani, F., Y. Kishigami, J. Leete, and A. A. Abidi, "CMOS mixers and polyphase filters for large image rejection," IEEE J. Solid-state Circuits, Vol. 36, No. 6, 873-887, 2001.
doi:10.1109/4.924850

14. Wu, T.-H. and C. C. Meng, "5.2/5.7 GHz 48 dB image rejection GaInP/GaAs HBT weaver downconverter using LO frequency quadrupler," IEEE J. Solid-state Circuits, Vol. 41, No. 11, 2468-2480, 2006.
doi:10.1109/JSSC.2006.883332

15. Syu, J.-S., C. C. Meng, Y.-H. Teng, and G.-W. Huang, "X-band weaver-hartley low-IF downconverter with a resonant LC load ," Asia Pacific Microwave Conference (APMC), 1168-1171, Dec. 2009.
doi:10.1109/APMC.2009.5384410

16. Weaver, D., "A third method of generation and detection of single-sideband signals," Proceedings of the IRE, 1703-1705, 1956.
doi:10.1109/JRPROC.1956.275061

17. Rudell, J. C., J.-J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, "A 1.9-GHz wide-band IFdouble conversion CMOS integrated receiver for cordless telephone applications," IEEE J. Solid-state Circuits, Vol. 32, No. 12, 2071-1088, 1997.
doi:10.1109/4.643665

18. US 1,666,206, , Modulation System, Apr. 17, 1928.

19. Meng, C. C., T.-H. Wu, J.-S. Syu, S.-W. Yu, K.-C. Tsung, and Y.-H. Teng, "2.4/5.7-GHz CMOS dual-band low-IF architecture using Weaver-Hartley image-rejection techniques," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 3, 552-561, Mar. 2009.
doi:10.1109/TMTT.2008.2012300

20. Syu, J.-S., C. C. Meng, and G.-W. Huang, "Dynamic range reduction due to RF and image signal co-existence in a highly-merged 2.4/5.7-GHz dual-band low-IF downconverter," IEEE MTT-S Int. Microw. Symp. Dig., 1016-1019, May 2010.