PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 1-12

250 MHz TO 30 GHz, UNILATERAL CIRCUITMODEL FOR INGAP/GAAS HBT

By T. T. Thein, C. L. Law, and K. Fu

Full Article PDF (261 KB)

Abstract:
A unilateral circuit model, which precisely predicts small signal response over a wide range of frequencies and bias points, is quantitatively analyzed and presented. The shortfall of current unilateral assumption and transformation technique is presented. A complete and explicit analysis is provided to develop a compact unilateral circuit model. The model is intended to predict input reflection, forward transmission and output reflection coefficients over wide range of frequencies. The technique is validated by transforming bilateral a small signal model of 3 x 3 μm x 40 μm, InGaP/GaAs HBT into its unilateral equivalent over the frequency range of 250 MHz to 30 GHz. The accuracy of the technique is corroborated at various bias conditions; collector current from 3 mA to 150 mA and collector-emitter voltage from 1 V to 5 V. Simulated results show very good agreement between small signal responses of transformed unilateral and bilateral circuit models.

Citation:
T. T. Thein, C. L. Law, and K. Fu, "250 MHz to 30 GHz , Unilateral Circuitmodel for Ingap/GaAs Hbt," Progress In Electromagnetics Research C, Vol. 26, 1-12, 2012.
doi:10.2528/PIERC11101702

References:
1. Van Der Heijden, M., et al., "On the optimum biasing and input out-of-band terminations of linear and power effcient class-AB bipolar RF amplifiers," IEEE Proceedings of the Meeting on Bipolar/BiCMOS Circuits and Technology, 2004.

2. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly effcient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602

3. Iwamoto, M., et al., "Optimum bias conditions for linear broad-band InGaP/GaAs HBT power amplifiers," IEEE Trans. Micro. Theory Tech., Vol. 50, No. 12, 2954-2962, 2002.
doi:10.1109/TMTT.2002.805135

4. Van Der Heijden, M. P., et al., "Theory and design of an ultra-linear square-law approximated LDMOS power amplifier in class-AB operation," IEEE Trans. Micro. Theory Tech., Vol. 50, No. 9, 2176-2184, 2002.
doi:10.1109/TMTT.2002.802332

5. Karkhaneh, H., A. Ghorbani, and H. Amindavar, "Modeling and compensating memory effect in high power amplifier for OFDM system," Progress In Electromagnetics Research, Vol. 3, 183-194, 2008.

6. Olson, S., B. Thompson, and B. Stengel, "Distributed amplifier with narrowband amplifier effciency," IEEE International Microwave Simposium, 155-158, Honolulu, USA, 2007.

7. Sheinman, B. and C. Ritter, "Base charge dynamics of abrupt base-emitter junction HBTs and its representation in transistor models," IEEE Trans. Electron Devices, Vol. 54, No. 4, 632-636, 2007.
doi:10.1109/TED.2007.892363

8. Zhao, Y., et al., "Linearity improvement of HBT-based Doherty power amplifiers based on a simple analytical model," IEEE Trans. Micro. Theory Tech., Vol. 54, No. 12, 4479-4488, 2006.
doi:10.1109/TMTT.2006.883245

9. Lee, K., et al., "Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model," IEEE Trans. Electron Devices, Vol. 52, No. 3, 375-384, 2005.
doi:10.1109/TED.2005.843906

10. Yang, T. R., et al., "SiGe HBT's small-signal Pi modeling," IEEE Trans. Micro. Theory Tech., Vol. 55, No. 7, 1417-1424, 2007.
doi:10.1109/TMTT.2007.900214

11. Olvera-Cervantes, J. L., et al., "A new analytical method for robust extraction of the small-signal equivalent circuit for SiGe HBTs operating at cryogenic temperatures," IEEE Trans. Micro. Theory Tech., Vol. 56, No. 3, 568-574, 2008.
doi:10.1109/TMTT.2008.916917

12. Spirito, M. and et al, "Experimental procedure to optimize out-of- band terminations for highly linear and power effcient bipolar class-AB RF amplifiers," IEEE Proceedings of the Meeting on Bipolar/BiCMOS Circuits and Technology, 112-115, 2005.

13. Gray, P. R., et al., Analysis and Design of Analog Integrated Circuits, Wiley, New York, USA, 1993.

14. Everard, J., J. Wiley, and I. Sons, Fundamentals of RF Circuit Design, Wiley Online Library, 2001.
doi:10.1002/0470841753

15. Paoloni, C. and S. D'Agostino, "An HBT unilateral model to design distributed amplifiers," IEEE Trans. Micro. Theory Tech., Vol. 47, No. 6, 795-798, 1999.
doi:10.1109/22.769352

16. Reisch, M., High-frequency Bipolar Transistors: Physics, Modelling, Applications, Springer Verlag, 2003.
doi:10.1007/978-3-642-55900-6

17. Tu, H. Y., et al., "An analysis of the anomalous dip in scattering parameter S22 of InGaP-GaAs heterojunction bipolar transistors (HBTs)," IEEE Trans. Electron Devices, Vol. 49, No. 10, 1831-1833, 2002.
doi:10.1109/TED.2002.802658

18. Lu, S. S., et al., "The origin of the kink phenomenon of transistor scattering parameter S22," IEEE Trans. Micro. Theory Tech., Vol. 49, No. 2, 333-340, 2001.
doi:10.1109/22.903094


© Copyright 2010 EMW Publishing. All Rights Reserved