PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 25 > pp. 233-247

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES

By Q.-C. Zhou, H. Gao, and F. Wang

Full Article PDF (336 KB)

Abstract:
The performance of high resolution subspace-based algorithms are particularly sensitive to the prior information of the source number, the Signal-to-Noise Ratio (SNR) and the snapshot. Although the existing direction-of-arrival (DOA) estimation methods without estimating the source number could eliminate the awful impact brought by incorrect source number estimation, yet its performance would get deteriorated by small snapshots and low SNR. Methods which exploit noise and signal subspaces information simultaneously, such as SSMUSIC, could provide a high resolution performance in such nonideal circumstances. However, its performance would degrade severely when the prior information of the source number is incorrect. To provide a DOA estimation method without estimating the number of source, which has a high resolution performance in small sample and low SNR scenario, using all information spreads in eigenvalues and eigenvectors, this paper reconstructs a new spatial spectrum which is very similar to the SSMUSIC algorithm. In order to enhance the robustness of the new method, we provide an empirical method to modify the eigenvalues to prohibit the spreading of noise eigenvalues caused by snapshot deficient and low SNR. To verify the validity of the new method, comparisons with other algorithms are made in computer simulations and the measured data test.

Citation:
Q.-C. Zhou, H. Gao, and F. Wang, "A High Resolution DOA Estimating Method Without Estimating the Number of Sources," Progress In Electromagnetics Research C, Vol. 25, 233-247, 2012.
doi:10.2528/PIERC11102607

References:
1. Chadwick, , A., , "Superresolution for high-frequency radar," IET Radar, Sonar and Navigation,, Vol. 1, No. 6, 431-436, , 2007.
doi:10.1049/iet-rsn:20060176

2. Zhang, X., X. Gao, G. Feng, and D. Xu, , "Blind joint DOA and dod estimation and identifiability results for MIMO radar with di®erent transmit/receive array manifolds," Progress In Electromagnetics Research B,, Vol. 18, 101-119, 2009.
doi:10.2528/PIERB09050603

3. Bencheikh, M. L. , Y. Wang, and , "Combined esprit-rootmusic for DOA-dod estimation in polarimetric bistatic MIMO radar,", Vol. 22, 109-117, 2011.

4. Liang, , G. L., , K. Zhang, F. Jin, and G. P. Zhang, , "Modified MVDR algorithm for DOA estimation using acoustic vector hydrophone," 2011 IEEE International Conference on Computer Science and Automation Engineering,, 327-330, , 2011 .
doi:10.1109/CSAE.2011.5952480

5. Yang, , P., , F. Yang, and Z.-P. Nie, , "DOA estimation with sub-array divided technique and interporlated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

6. Yang, , P., , F. Yang, Z.-P. Nie, H. Zhou, B. Li, and X. Tang, "Fast 2-d DOA and polarization estimation using arbitrary conformal antenna array," Progress In Electromagnetics Research C, Vol. 15, 119-132, 2012.
doi:10.2528/PIERC11070706

7. Schmidt, R. O., , "Multiple emitter location and signal parameter estimation," IEEE Trans. on Antennas and Propagation , Vol. 34, No. 2, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

8. McCloud, , M. L. and L. L. Scharf, "A subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. on Antennas and Propagation,, Vol. 50, No. 10, , 1382-1390, , 2002.
doi:10.1109/TAP.2002.805244

9. Mestre, , X., M. A. Lagunas, and , "Modified subspace algorithms for DOA estimation with large arrays," IEEE Trans. on Signal Processing,, Vol. 56, No. 2, 598-614, 2008.
doi:10.1109/TSP.2007.907884

10. You, , H., J. G. Huang, and J. F. Chen, "Synthetic spatial spectrum DOA estimator for two closely spaced emitters," 3rd IEEE Conference on Industrial Electronics and Applications, , Vol. 2449, No. 2451, 2008.

11. Yang, , S. L., , H. Y. Ke, J. C. Hou, X. B. Wu, J. S. Tian, and , "Detection of the number of signals in super-resolution ocean surface current algorithm for OSMAR2000," IEEE Conference and Exhibition on OCEANS, 962-966, , 2001.

12. Nadakudit, R. R. and A. Edelman, , R. R. , A. Edelman, and , "Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples," IEEE Trans. on Signal Processing , Vol. 56, No. 7, 2625-2638, 2008.
doi:10.1109/TSP.2008.917356

13. Nadler, B., "Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator," IEEE Trans. on Signal Processing, Vol. 58, No. 5, 2746{275-2756, 2010.
doi:10.1109/TSP.2010.2042481

14. Haddadi, , F., , et al., "Statistical performance analysis of MDL source enumeration in array processing," IEEE Trans. on Signal Processing, Vol. 58, No. 1, 452-457, 2010.
doi:10.1109/TSP.2009.2028207

15. Qi, , C. Y., , Y. S. Zhang, Y. Han, and X. H. Chen, "An algorithm on high resolution DOA estimation with unknown number of signal sources," 4th International Conference on Microwave and Millimeter Wave Technology , 227-230, 2004.

16. Park, , C. S., J. H. Choi, J. W. Yang, and S. P. Nah, , "Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources," 11th International Conference on Advanced Communication Technology, , 2295-2298, , 2009.

17. Zhang, , Y. , B. P. Ng, and , "MUSIC-Like DOA estimation without estimating the number of sources," IEEE Trans. on Signal Processing,, Vol. 58, No. 3, 1668-1676, 2010.
doi:10.1109/TSP.2009.2037074

18. Xu, , Z. Y., , P. Liu, and X. D. Wang, , "Bline multiuser detection: From MOE to subspace methods," IEEE Trans. on Signal Processing, , Vol. 52, No. 2, 510-524, 2004.
doi:10.1109/TSP.2003.821111

19. Frikel, M., S. Bourennane, and , "High-resolution methods without eigendecomposition for locating the acoustic sources," Applied Acoustics, , Vol. 52, No. 2, 139-154, 1997.
doi:10.1016/S0003-682X(97)00015-7

20. Manikas, A. N. , A. N. , L. R. Turnor, and , "Adaptive signal parameter estimation and classification technique," IEE Proceedings --- F, Vol. 138, No. 3, 267-277, 1991..

21. Capon, , J., , "High resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, , Vol. 57, No. 8, 1969..
doi:10.1109/PROC.1969.7278

22. Porat, , B. , B. Friedlander, and , "Analysis of the asymptotic relative e±ciency of MUSIC algorithm," IEEE Trans. on Acoustics, Speech and Signal Processing, , Vol. 36, No. 4, 532-544, , 1988.
doi:10.1109/29.1557

23. Yang, S. L., , S. L., , H. Y. Ke, X. B. Wu, J. S. Tian, and J. C. Hou, "HF radar ocean current algorithm based on MUSIC and the validation experiments ," IEEE Journal of Oceanic Engineering, Vol. 30, No. 3, 601-617, 2005.
doi:10.1109/JOE.2005.858370

24. Yan, , S., , X. Wu, and Z. Chen, , "Remote sensing with Tdmf radar: Some preliminary results," Progress In Electromagnetics Research Letters,, Vol. 14, 79-90, 2010.
doi:10.2528/PIERL10022405

25. Naderi Shahi, , S., , M. Emadi, and K. H. Sadeghi, , "High resolution DOA estimation in fully coherent environments," Progress In Electromagnetics Research C, , Vol. 5, 135-148, 2008.

26. Lee, , H. B. and Resolution threshold of, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans on Acoustics, Speech and Signal Processing, Vol. 38, No. 9, 1545-1559, 1990.
doi:10.1109/29.60074


© Copyright 2010 EMW Publishing. All Rights Reserved