PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 167-179

THE CLOSE-FORM SOLUTION FOR SYMMETRIC BUTLER MATRICES

By C. Leclerc, H. Aubert, A. Ali, A. Annabi, and M. Romier

Full Article PDF (205 KB)

Abstract:
The design of a 2n×2n Butler matrix is usually based on an iterative process. In this paper, recurrence relations behind this process are found, and the close-form solutions, i.e., non-recursive functions of n, are reported. These solutions allow the direct derivation of the scattering matrix coecients of symmetric and large Butler matrices.

Citation:
C. Leclerc, H. Aubert, A. Ali, A. Annabi, and M. Romier, "The Close-Form Solution for Symmetric Butler Matrices," Progress In Electromagnetics Research C, Vol. 26, 167-179, 2012.
doi:10.2528/PIERC11111403

References:
1. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 1961.

2. Moody, H. J., "The systematic design of the Butler matrix," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 6, 786-788, 1964.
doi:10.1109/TAP.1964.1138319

3. Shelton, J. P. and K. S. Kelleher, "Multiple beams from linear arrays," IRE Transactions on Antennas and Propagation, Vol. 9, No. 2, 154-161, 1961.
doi:10.1109/TAP.1961.1144964

4. Allen, J. L., "A theoretical limitation on the formation of lossless multiple beams in linear arrays," IRE Transactions on Antennas and Propagation, Vol. 9, No. 4, 350-352, 1961.
doi:10.1109/TAP.1961.1145014

5. Jaeckle, W. G., "Systematic design of a matrix network used for antenna beam steering," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 2, 314-316, 1967.
doi:10.1109/TAP.1967.1138908

6. Macnamara, T. M., "Simplified design procedures for Butler matrices incorporating 90 hybrids or 180 hybrids," IEE Proceedings, Vol. 134, No. 1, 50-54, 1987.

7. Maddah-Ali, M. and K. Forooraghi, "A compact Butler matrix for WLAN application," Microwave and Optical Technology Letters, Vol. 52, 2294-2298, 2010.
doi:10.1002/mop.25474

8. Dall'Omo, C., T. Monediere, B. Jecko, F. Lamour, I. Wolk, and M. Elkael , "Design and realization of a 4 × 4 microstrip Butler matrix without any crossing in millimeter waves," Microwave and Optical Technology Letters, Vol. 38, 462-465, 2003.
doi:10.1002/mop.11090

9. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Design and implementation of a planar 4 × 4 Butler matrix in SIW technology for wide band high power applications," Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011.
doi:10.2528/PIERB11062004

10. Mohamed Ali, A. A., N. J. G. Fonseca, F. Coccetti, and H. Aubert, "Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 503-512, 2011.
doi:10.1109/TAP.2010.2093499


© Copyright 2010 EMW Publishing. All Rights Reserved