PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 27 > pp. 157-167

THE FRACTAL NATURE OF THE ELECTROMAGNETIC FIELD WITHIN A REVERBERATING CHAMBER

By A. Sorrentino, L. Mascolo, G. Ferrara, and M. Migliaccio

Full Article PDF (212 KB)

Abstract:
In this paper, a new look at the electromagnetic field in a reverberating chamber (RC) is presented. It follows the fractional Brownian motion (fBm) model and exploits the Hurst parameter as the key parameter to discriminate among various RC configurations. Experiments accomplished at the RC of the Università di Napoli Parthenope, formerly Istituto Universitario Navale (IUN), confirm the physical soundness of the proposed model.

Citation:
A. Sorrentino, L. Mascolo, G. Ferrara, and M. Migliaccio, "The Fractal Nature of the Electromagnetic Field Within a Reverberating Chamber," Progress In Electromagnetics Research C, Vol. 27, 157-167, 2012.
doi:10.2528/PIERC11122702

References:
1. Finkenzeller, , K., "RFID Handbook: Radio-frequency Identification Fundamentals and Applications," Wiley & Sons, Inc., 2004..

2. Manish, B., B. , M. Shahram, and , "RFID Field Guide: Deploying Radio Frequency Identification Systems," Prentice Hall PTR, , 2005..

3. Zainud-Deen, S. H., , S. H., , H. A. Malhat, and K. H. Awadalla, "Circular polarized dielectric resonator antenna for portable RFID reader using a single feed," International Journal of Radio Frequency Identification & Wireless Sensor Networks,, Vol. 1, No. 1, 2011.

4. Hill, , D. A. , J. Ladbury, and , "Spatial-correlation functions of fields and energy density in a reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 44, No. 1, , 95-101, 2002.
doi:10.1109/15.990715

5. Ferrara, , G., M. Migliaccio, and A. Sorrentino, "Characterization of GSM non-line-of-sight propagation channels generated in a reverberating chamber by using bit error rates," IEEE Trans. Electromagn. Compat., Vol. 49, No. 3, 467-473, 2007.
doi:10.1109/TEMC.2007.903040

6. Sorrentino, A., G. Ferrara, and M. Migliaccio, "On the coherence time control of a continuous mode stirred reverberating chamber," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3372-3374, 2009.
doi:10.1109/TAP.2009.2029373

7. Sorrentino, , A., , G. Ferrara, and M. Migliaccio, "Comparison between GMSK and PSK modulation systems in the wireless propagation channels emulated in a reverberating chamber," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1630-1633, , 2011 .

8. Sorrentino, , A., G. Ferrara, and M. Migliaccio, "The reverberating chamber as a line-of-sight wireless channel emulator," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1825-1830, 2008.
doi:10.1109/TAP.2008.923325

9. Holloway, , C. L., , D. A. Hill, J. M. Ladbury, P. F. Wilson´╝î G. Koepke, and J. Coder, , "On the use of reverberation chamber to simulate a Rician radio environment for testing of wireless device," IEEE Trans. Antennas Propag., Vol. 54, No. 11, , 3167-3177, 2006.
doi:10.1109/TAP.2006.883987

10. Chen, X., , P. S. Kildal, and S. H. Lai, , "Estimation of average Rician K-factor and average mode bandwidth in loaded reverberation chamber," IEEE Antennas Wireless. Propag. Lett., Vol. 10, 1437-1440, 2011.
doi:10.1109/LAWP.2011.2179910

11. Cappetta, , L., , M. Feo, V. Fiumara, V. Pierro, and I. M. Pinto, "Electromagnetic chaos in mode | stirred reverberation enclosure," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 185-192, 1998.
doi:10.1109/15.709415

12. Orjubin, , G., , E. Richalot, O. Picon, and O. Legrand, , "Chaoticity of a reverberation chamber assessed from the analysis of modal distributions obtained by FEM," IEEE Trans. Electromagn. Compat., Vol. 49, No. 4, 762-771, 2007.
doi:10.1109/TEMC.2007.908266

13. Haykin, , S. , X. B. Li, and , "Detection of signals in chaos," IEEE Proc., Vol. 83, No. 1, 95-122, , 1995.
doi:10.1109/5.362751

14. Corona, , P., G. Ferrara, and M. Migliaccio, , "Generalized stochastic field model for reverberating chamber," IEEE Trans. Electromagn. Compat., Vol. 46, No. 4, 655-660, 2004.
doi:10.1109/TEMC.2004.837831

15. Feder, , J., , Fractals, , Plenum Press, , New York, NY, , 1988.

16. Mandelbrot, , B. B., , The Fractal Geometry of Nature, , W. H. Freeman and Co., , New York, NY, , 1982.

17. Baudoin, , F. , D. Nualart, and , "Notes on the two-dimensional fractional Brownian motion," The Annals of Probability, Vol. 34, No. 1, 159-180, 2006.
doi:10.1214/009117905000000288

18. Kay, , S. M., , Modern Spectral Estimation, Theory and Application,, Prentice Hall, , Englewood Cliffs, NJ, 1998..


© Copyright 2010 EMW Publishing. All Rights Reserved