PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 35 > pp. 73-82

VISUALIZATION OF WATER TRANSPORT PATHWAYS IN PLANTS USING DIFFUSION TENSOR IMAGING

By M. L. H. Gruwel, P. Latta, U. Sboto-Frankenstein, and P. Gervai

Full Article PDF (285 KB)

Abstract:
Magnetic resonance imaging (MRI) is a well established non-invasive technique to retrieve structural information from plants and fruits. Water transport inside these materials has also been studied with MRI, however, the integrate combination of studying both structure and dynamics has hardly been considered. Here it is shown how the anisotropic nature of water diffusion in channels or vessels inside the plant, combined with plant structural information, can be used to map these vessels in three dimensions. Diffusion Tensor Imaging (DTI), an MR technique initially introduced to study white matter in mammalian brains, is used to track water transport pathways inside Thompson Seedless grapes and celery as an example.

Citation:
M. L. H. Gruwel, P. Latta, U. Sboto-Frankenstein, and P. Gervai, "Visualization of Water Transport Pathways in Plants Using Diffusion Tensor Imaging," Progress In Electromagnetics Research C, Vol. 35, 73-82, 2013.
doi:10.2528/PIERC12110506

References:
1. Koeckenberger, W., C. De Panfilis, D. Santoro, P. Dahiya, and S. Rawsthorne, "High resolution NMR microscopy of plants and fungi," J. Microsc., Vol. 214, No. 2, 182-189, 2004.
doi:10.1111/j.0022-2720.2004.01351.x

2. Scheenen, T., A. Heemskerk, A. De Jager, F. Vergeldt, and H. Van As, "Functional imaging of plants: A nuclear magnetic resonance study of a cucumber plant," Biophys. J., Vol. 82, No. 1, Pt. 1, 481-492, 2002.

3. Scheenen, T. W. J., F. J. Vergeldt, A. M. Heemskerk, and H. Van As, "Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area," Plant Physiol., Vol. 144, No. 2, 1157-1165, 2007.
doi:10.1104/pp.106.089250

4. Borisjuk, L., H. Rolletschek, and T. Neuberger, "Surveying the plant's world by magnetic resonance imaging," Plant J., Vol. 70, No. 1, 129-146, 2012.
doi:10.1111/j.1365-313X.2012.04927.x

5. Jahnke, S., M. I. Menzel, D. Van Dusschoten, G. W. Roeb, J. Buehler, S. Minwuyelet, P. Bluemler, V. M. Temperton, T. Hombach, M. Streun, S. Beer, M. Khodaverdi, K. Ziemons, H. H. Coenen, and U. Schurr, "Combined MRI-PET dissects dynamic changes in plant structures and functions," Plant J., Vol. 59, No. 4, 634-644, 2009.
doi:10.1111/j.1365-313X.2009.03888.x

6. Basser, P. J., J. Mattiello, and D. Le Bihan, "MR diffusion tensor spectroscopy and imaging," Biophys J., Vol. 66, No. 1, 259-267, 1994.
doi:10.1016/S0006-3495(94)80775-1

7. Le Bihan, D., J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, "Diffusion tensor imaging: Concepts and applications," J. Magn. Reson. Imaging, Vol. 13, No. 4, 534-546, 2001.
doi:10.1002/jmri.1076

8. Tournier, J.-D., S. Mori, and A. Leemans, "Diffusion tensor imaging and beyond," Magn. Reson. Med., Vol. 65, No. 6, 1532-1556, 2011.
doi:10.1002/mrm.22924

9. Ciccarelli, O., M. Catani, H. Johansen-Berg, C. Clark, and A. Thompson, "Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments," Lancet Neurol., Vol. 7, No. 8, 715-727, 2008.
doi:10.1016/S1474-4422(08)70163-7

10. Lazar, M., "Mapping brain anatomical connectivity using white matter tractography," NMR Biomed., Vol. 23, No. 7, 821-835, 2010.
doi:10.1002/nbm.1579

11. Gruwel, M. L. H., P. K. Ghosh, P. Latta, and D. S. Jayas, "On the diffusion constant of water in wheat," J. Agric. Food Chem., Vol. 56, No. 1, 59-62, 2008.
doi:10.1021/jf0720537

12. Boujraf, S., R. Luypaert, H. Eisendrath, and M. Osteaux, "Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems," MAGMA, Vol. 13, No. 2, 82-90, 2001.

13. Chatelet, D. S., T. L. Rost, M. A. Matthews, K. A. Shackel, and , "The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development," J. Exp. Bot., Vol. 59, No. 8, 1997-2007, 2008.
doi:10.1093/jxb/ern061

14. Greenspan, M., K. Shackel, and M. A. Matthews, "Developmental changes in the diurnal water budget of the grape berry exposed to water deficits," Plant, Cell Environ., Vol. 17, 811-820, 1994.
doi:10.1111/j.1365-3040.1994.tb00175.x

15. Bondada, B. R., M. A. Matthews, and K. A. Shackel, "Functional xylem in the post-veraison grape berry," J. Exp. Bot., Vol. 56, No. 421, 2949-2957, 2005.
doi:10.1093/jxb/eri291

16. Duva, F. P., M. Cambert, and F. Mariette, "NMR study of tomato pericarp tissue by spin-spin relaxation and water self-diffusion," Appl. Magn. Reson., Vol. 28, 29-40, 2005.
doi:10.1007/BF03166991

17. Andaur, J. E., A. R. Guesalaga, E. E. Agosin, M. W. Guarini, and P. Irarrazaval, "Magnetic resonance imaging for nondestructive analysis of wine grapes," J. Agric. Food Chem., Vol. 52, 165-170, 2004.
doi:10.1021/jf034886c

18. Pope, J. M., D. Jonas, and R. R. Walker, "Applications of NMR micro-imaging to the study of water, lipid, and carbohydrate distribution in grape berries," Protoplasma, Vol. 173, 177-186, 1993.
doi:10.1007/BF01379006

19. Fillard, P., X. Pennec, V. Arsigny, and N. Ayache, "Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics," IEEE Trans. Med. Imaging,, Vol. 26, No. 11, 1472-1482, 2007.
doi:10.1109/TMI.2007.899173

20. Hui, , E. S., M. M. Cheung, K. C. Chan, and E. X. Wu, "B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes," Neuroimage, Vol. 49, 2366-2374, 2010.
doi:10.1016/j.neuroimage.2009.10.022

21. Fillard, P. and N. Toussaint, "DTI processing and analysis with MedINRIA," Proc. Intl. Soc. Mag. Reson. Med., Vol. 19, 4030, 2011.


© Copyright 2010 EMW Publishing. All Rights Reserved