PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 35 > pp. 147-159

BROADBAND SUBSTRATE INTEGRATED COAXIAL LINE TO CBCPW TRANSITION FOR RAT-RACE COUPLERS AND DUAL-BAND COUPLERS DESIGN

By Q. Liu, Y. Liu, Y. Wu, S. Li, C. Yu, and M. Su

Full Article PDF (489 KB)

Abstract:
In this paper, broadband transitions from substrate integrated coaxial line (SICL) to a conductor-backed coplanar waveguide (CBCPW) are proposed and designed. Measurement results show that the insertion loss and return loss are better than -0.5 dB and -10 dB, respectively from 0 to 13 GHz. Then, for verifying the performance of SICL and the validity of SICL transition design, a 3 dB SICL rat-race coupler operating at 2.3 GHz is designed, fabricated, and measured. Compared with the conventional microstrip line coupler, this SICL coupler maintains good performance but with a remarkable 24% reduction in size. At last, a 10 dB dual-band coupled SICL coupler operating at 2.4/5.8 GHz is proposed, and the measured results agree well with the schematic and electromagnetic simulated results. The measured results demonstrate that the fabricated bandwidths are 30% and 12.8%, the |S31| are -10.1 dB and -10.3 dB, the directivities are 18 dB and 20 dB at the low (2.4 GHz) and high (5.8 GHz) operating frequencies, respectively. Compare with the dual-band coupled microstrip line coupler, performance of the dual-band coupled SICL coupler is enhanced.

Citation:
Q. Liu, Y. Liu, Y. Wu, S. Li, C. Yu, and M. Su, "Broadband Substrate Integrated Coaxial Line to Cbcpw Transition for Rat-Race Couplers and Dual-Band Couplers Design," Progress In Electromagnetics Research C, Vol. 35, 147-159, 2013.
doi:10.2528/PIERC12111902

References:
1. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., Vol. 11, 68-70, 2001.
doi:10.1109/7260.914305

2. Wu, K., "Substrate integrated circuits (SICs) for low-cost high-density integration of millimeter-wave wireless systems," IEEE Radio and Wireless Symp., 683-686, 2008.

3. Bozzi, M. , A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

4. Gatti, F., M. Bozzi, L. Perregrini, K. Wu, and R. G. Bosisio, "A novel substrate integrated coaxial line (SICL) for wide-band applications," 36th European Microwave Conference, 1614-1617, 2006.

5. Gatti, F., M. Bozzi, L. Perregrini, K. Wu, and R. G. Bosisio, "A new wide-band six-port junction based on substrate integrated coaxial line (SICL) technology," IEEE Mediterranean Electrotechnical Conference, 367-370, 2006.

6. Zhu, F., W. Hong, J.-X. Chen, and K. Wu, "Ultra-wideband single and dual baluns based on substrate integrated coaxial line technology," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 10, 3062-3070, 2012.
doi:10.1109/TMTT.2012.2209448

7. Zhou, Y. and S. Lucyszyn, "Modelling of reconfigurable terahertz integrated architecture (Retina) SIW structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806

8. Urbano, D., E. Arnieri, G. Cappuccino, and G. Amendola, "Simulation and timing performances of integrated waveguides for ultra-high speed interconnects," Microwave Opt. Technol. Lett., Vol. 50, 666-672, 2008.
doi:10.1002/mop.23168

9. Liang, W. and W. Hong, "Substrate integrated coaxial line 3 dB coupler," Electronics Letters, Vol. 48, 35-36, 2012.
doi:10.1049/el.2011.2708

10. Song, K. and Y. Fan, "Ku-band substrate integrated waveguide transitions between layers," Microwave Opt. Technol. Lett., Vol. 51, 2585-2588, 2009.
doi:10.1002/mop.24685

11. Deslandes, D. and K. Wu, "Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides," IEEE Trans. Microw. Theory Tech., Vol. 53, 2487-2494, 2005.
doi:10.1109/TMTT.2005.852778

12. Chen, X. P. and K. Wu, "Low-loss ultra-wideband transition between conductor-backed coplanar waveguide and substrate integrated waveguide," IEEE MTT-S Int. Microwave Symp. Dig., 349-352, 2009.

13. Koziel, S. and S. Ogurtsov, "Design of broadband transitions for substrate integrated circuits," Microwave Opt. Technol. Lett., Vol. 53, 2942-2945, 2011.
doi:10.1002/mop.26391

14. Lee, S., S. Jung, and H. Y. Lee, "Ultra-wideband CPW-to-substrate integrated waveguide transition using an elevated-CPW section," IEEE Microw. Wireless Compon. Lett., Vol. 18, 746-748, 2008.
doi:10.1109/LMWC.2008.2005230

15. Zhang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

16. Xu, Z. Q., Y. Shi, P. Wang, J. X. Liao, and X. B. Wei, "Substrate integrated waveguide (SIW) filter with hexagonal resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1521-1527, 2012.
doi:10.1080/09205071.2012.703951

17. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-Line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

18. Masa-Campos, J. L. , P. Rodriguez-Fernandez, M. Sierra-Peerez, and J. L. Fernandez-Jambrina, "Monopulse circularly polarized SIW slot array antenna in millimetre band," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 857-868, 2011.
doi:10.1163/156939311794827311

19. Corona-Chavez, A. and T. Itoh, "Novel miniaturized triplexer using substrate integrated technology," Asia-Pacific Microwave Conference Proceedings, 678-681, 2010.

20. Liu, Y., X. H. Tang, and T. Wu, "SIW-based low phase-noise millimeter-wave planar dual-port voltage-controlled oscillator," Journal of Electromagnetic Waves and Applications,, Vol. 26, No. 8-9, 1059-1069, 2012.
doi:10.1080/09205071.2012.710375

21. Li, J., Y. Wu, Y. Liu, J. Shen, S. Li, and C. Yu, "A generalized coupled-line dual-band Wilkinson power divider with extended ports," Progress In Electromagnetics Research, Vol. 129, 197-214, 2012.

22. Wu, Y., Y. Liu, and Q. Xue, "An analytical approach for a novel coupled-line dual-band Wilkinson power divider," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 2, 286-294, 2011.
doi:10.1109/TMTT.2010.2084096

23. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

24. Lin, Z. and Q.-X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202

25. Lee, S. and Y. Lee, "A uniform coupled-line dual-band filter with different bandwidths," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 10, 545-547, 2010.
doi:10.1109/LMWC.2010.2065219

26. Chen, X. W., L. Li, Y. Zhang, Y. Geng, and W. Zhang, "Balanced dual-band bandpass filter based on asymmetrical coupled lines," Electromagnetics, Vol. 32, No. 1, 1-7, 2012.
doi:10.1080/02726343.2012.633875

27. Wang, X., W.-Y. Yin, and K.-L. Wu, "A dual-band coupled-line coupler with an arbitrary coupling coefficient," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 4, 945-951, 2012.
doi:10.1109/TMTT.2012.2185949

28. Li, S., B. Tang, Y. Liu, S. Li, C. Yu, and Y. Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.

29. Lo, W. T., C. C. Tzuang, S. T. Peng, C. C. Tien, C. C. Chang, and J. W. Huang, "Resonant phenomena in conductor-backed coplanar waveguides (CBCPW's)," IEEE Trans. Microw. Theory Tech., Vol. 41, 2099-2108, 1993.

30. Pozar, D. M., "Microwave Engineering," Wiley, 352, 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved