Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 39 > pp. 25-36


By A. S. A. Jalal, A. Ismail, A. R. H. Alhawari, M. F. A. Rasid, N. K. Noordin, and M. A. Mahdi

Full Article PDF (359 KB)

This paper proposes miniature radio frequency identification (RFID) tag antenna designed to operate on metallic objects, in the UHF frequency range (915 MHz), without significantly degrading its read range. The antenna structure is composed of two parts: Part 1 comprises two square patches electrically connected to the ground plane through vias while Part 2 is an unconnected inter-layer consisting of two square complementary split ring resonators to allow for capacitive reactance increase. Consequently, its self-resonant frequency will shift towards low frequency, which theoretically allows shrinking RFID tag antenna into smaller size. The antenna was simulated and measured to verify its conjugate matching with chip impedance. The results of experimental tests show that the proposed RFID tag offers a maximum read range of 0.82 m when placed on a metallic object. The tag's overall size is 36.7×18.1×3.2 mm3. Both simulation and measurement results are provided to validate the design.

A. S. A. Jalal, A. Ismail, A. R. H. Alhawari, M. F. A. Rasid, N. K. Noordin, and M. A. Mahdi, "Miniaturized Metal Mount Minkowski Fractal RFID Tag Antenna with Complementary Split Ring Resonator," Progress In Electromagnetics Research C, Vol. 39, 25-36, 2013.

1. Kwon, H. and B. Lee, "Compact slotted planar inverted-F RFID tag mountable on metallic objects," Electron. Lett., Vol. 41, No. 24, 1308-1310, 2005.

2. Son, H. W. and G. Y. Choi, "Orthogonally proximity-coupled patch antenna for a passive RFID tag on metallic surfaces," Microw. Opt. Technol. Lett., Vol. 49, No. 3, 715-717, 2007.

3. Kim, J. S., W. Choi, and G. Y. Choi, "UHF RFID tag antenna using two PIFAs embedded in metallic objects," Electron. Lett., Vol. 44, No. 20, 1181-1182, 2008.

4. Chen, H.-D. and Y.-H. Tsao, "Low-profile PIFA array antennas for UHF band RFID tags mountable on metallic objects," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1087-1092, 2010.

5. Kim, K. H., J. G. Song, D. H. Kim, H. S. Hu, and J. H. Park, "Forkshaped RFID tag antenna mountable on metallic surfaces," Electron. Lett., Vol. 43, No. 25, 1400-1402, 2007.

6. Chen, S.-L., "A miniature RFID tag antenna design for metallic objects application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1043-1045, 2009.

7. Chaimool, S. and P. Akkaraekthalin, "A compact dual-band printed dipole antenna based on fractal feature in ISM band," Proc. International Symposium on Antennas and Propagation (ISAP 2008), 27-30, 2008.

8. Lee, , Y.-C., J, and -S. Sun, "Dual-band dipole antenna for RFID tag applications," Proceedings of the 38th European Microwave Conference, 995-997, 2008.

9. Kimouche, H. and H. Zemmour, "A compact fractal dipole antenna for 915MHz and 2.4 GHz RFID tag applications," Progress In Electromagnetics Research Letters, Vol. 26, 105-114, 2011.

10. Zainud-Deen, S. H., H. A. Malhat, and K. H. Awadalla, "Fractal antenna for passive UHF RFID applications," Progress In Electromagnetics Research B, Vol. 16, 209-228, 2009.

11. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.

12. Best, S. R., "A comparison of the resonant properties of small space-filling fractal antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 197-200, 2003.

13. Loo, C.-H., K. Elmahgoub, F. Yang, A. Elsherbeni, D. Kajfez, A. Kishk, T. lsherbeni, L. Ukkonen, L. Sydnheimo, M. Kivikoski, S. Merilampi, and P. Ruuskanen, "Chip impedance matching for UHF RFID tag antenna design," Progress In Electromagnetics Research, Vol. 81, 359-370, 2008.

14. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 1998.

15. Palmer, K. D. and M. W. Rooyen, "Simple broadband measurements of balanced loads using a network analyzer," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 266-272, 2006.

16. Kuo, S.-K., S.-L. Chen, and C.-T. Lin, "An accurate method for impedance measurement of RFID tag antenna," Progress In Electromagnetics Research, Vol. 83, 93-106, 2008.

17. Qing, X., C. K. Goh, and Z. N. Chen, "Impedance characterization of RFID tag antennas and application in tag co-design," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1268-1274, 2009.

18. Kim, D., T. W. Koo, J.-I. Ryu, J.-G. Yook, and J. C. Kim, "Accurate impedance measurement and implementation of a folded dipole antenna for RFID tags," Proc. International Symposium on Antennas and Propagation (ISAP 2009), 2009.

19. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiment," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2572-2581, 2003.

20. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left handed metamaterials," Phys. Rev. B, Vol. 65, 144440(1)-144440(6), 2002.

21. Gay-Balmaz, P. and O. J. F. Martina, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics, Vol. 92, No. 5, 2929-2936, 2002.

22. Baena, J. D., J. Bonache, F. Martin, and R. M. Sillero, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.

23. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, Nov. 1999.

24. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, May 2000.

25. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to metasurface and metamaterial design," Physical Review Letters, Vol. 93, 197401(1)-197401(4), 2004.

26., , Murata MAGICSTRAP R° Application Note, Online Available: http://www.murata.co.jp/products/rfid/index.html.

27. Computer Simulation Technology (CST) Microwave Studio, Version 2010, , 2010.

28. Nikitin, P. V., K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich, "Power reflection coe±cient analysis for complex impedances in RFID tag design," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2721-2725, 2005.

29. Rao, K. V. S., P. V. Nikitin, and S. F. Lamn, "Antenna design for UHF RFID tags: A review and a practical application," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3870-3876, Dec. 2005.

30., , Alien Higgs-3, Online Available: http://www.prosign.dk/en/rfid-products/alien-technology/.

© Copyright 2010 EMW Publishing. All Rights Reserved