Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 175-186


By D. Abed, S. Redadaa, and S. Tedjini

Full Article PDF (391 KB)

In most existing transmitted-reference ultra-wideband (TR-UWB) communication systems, receivers use the standard Gaussian approximation (SGA) for multiuser interference (MUI). It is an assumption used in most conventional multiuser systems, where the MUI tends to a Gaussian process by the central limit theorem, and convergence is relatively fast with respect to the number of users. However, for TR-UWB systems which are developed for short-range applications, we have a small number of active users. In this case, significant performance degradation is found in TR-UWB receivers due to the impreciseness of SGA. In this paper, we show that the Middleton class-A model is a more appropriate statistical model for MUI modeling in TR-UWB systems than the often used SGA. A closed-form expression for the probability density function (PDF) of the TR-UWB system under MUI, Gaussian noise and impulsive alpha-stable interference is developed. All these analytical results are confirmed by numerical simulations.

D. Abed, S. Redadaa, and S. Tedjini, "Closed-form pdf for multiuser tr-UWB systems under gaussian noise and impulsive interference," Progress In Electromagnetics Research C, Vol. 40, 175-186, 2013.

1. Report and order in the commission's rules regarding ultra-wideband transmission systems, Federal Communications Commission, Apr. 2002.

2. Fan, Z. G., L. X. Ran, and J. A. Kong, "Source pulse optimizations for UWB radio systems," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1535-1550, 2006.

3. Win, , M. Z. and R. A. Scholtz, "On the energy capture of ultrawide bandwidth signals in dense multipath environments," IEEE J. Sel. Areas Commun., Vol. 2, No. 2, 245-247, Sep. 1998.

4. Liu, X., B.-Z. Wang, S. Xiao, and J. Deng, "Performance of impulse radio UWB communications based on time reversal technique," Progress In Electromagnetics Research, Vol. 79, 401-413, 2008.

5. Xiao, S. Q., J. Chen, B.-Z. Wang, and X. F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultrawideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.

6. Hoctor, R. T. and H. W. Tomlinson, "An overview of delay-hopped transmitted-reference RF communications,", Technique Information Series: G.E. Research and Development Center, Jan. 2002.

7. Xu, Z. and B. M. Sadler, "Multiuser transmitted reference ultra-wideband communication systems," IEEE J. Sel. Areas Commun., Vol. 24, No. 4, 766-772, Apr. 2006.

8. Jia, T. and D. I. Kim, "Multiple access performance of balanced UWB transmitted-reference systems in multipath," IEEE Trans. Wireless Commun., Vol. 7, No. 3, 1084-1094, Mar. 2008.

9. D'Amico, A. and U. Mengali, "Code-multiplexed transmitted-reference UWB systems in a multi-user environment," IEEE Trans. Commun., Vol. 58, No. 3, 966-974, Mar. 2010.

10. Forouzan, A. R., M. N. Kenari, and J. A. Salehi, "Performance analysis of time-hopping spread-spectrum multiple-access systems: Uncoded and coded schemes," IEEE Trans. Wireless Commun., Vol. 1, No. 4, 671-681, Oct. 2002.

11. Salehi, J. A. and C. A. Brackett, "Code division multiple-access techniques in optical fiber networks. Part II: Systems performance analysis," IEEE Trans. Commun., Vol. 37, No. 8, 834-841, Aug. 1989.

12. NIST/SEMATECH, " counts control charts," NIST/SEMATECH E-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/.

13. Middleton, D., "Statistical models of electromagnetic interference," IEEE Trans. Electromagn. Compat., Vol. 19, No. 3, 106-127, Aug. 1977.

14. Li, X. T., J. Sun, L. W. Jin, and M. Liu, "Bi-parameter CGM model for approximation of α-stable PDF," Electronics Letters, Vol. 44, No. 18, 1096-1097, Aug. 2008.

15. Di Renzo, M., L. A. Annoni, F. Graziosi, and F. Santucci, "A novel class of algorithms for timing acquisition of differential transmitted-reference UWB receivers: Architecture, performance analysis and system design," IEEE Trans. Wireless Commun., Vol. 7, No. 6, 2368-2387, Jun. 2008.

16. Cover, T. M. and J. A. Thomas, Elements of Information Theory, Wiley, NY, 1991.

17. Middleton, D., "Non-Gaussian noise models in signal processing for telecommunications: New methods and results for class A and class B noise models," IEEE Trans. on Information Theory, Vol. 45, No. 4, 1129-1149, May 1999.

© Copyright 2010 EMW Publishing. All Rights Reserved