PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 93-103

GUIDED-MODE RESONANCE FILTER COMPENSATED TO OPERATE ON A CURVED SURFACE

By R. C. Rumpf, M. Gates, C. L. Kozikowski, and W. A. Davis

Full Article PDF (348 KB)

Abstract:
Guided-mode resonance filters (GMRFs) are highly compact structures that can produce a strong frequency response from a single thin layer of dielectric. When a GMRF is formed onto a curved surface, the local angle of incidence varies over the aperture of the device and the overall performance significantly degrades. In the present work, we spatially varied the grating period of a curved GMRF to perfectly compensate for the local angle of incidence. The performance of the curved device actually surpassed that of a flat device because it also compensated for the spherical wave front from the source. This paper summarizes our design process and experimental results obtained around 25 GHz.

Citation:
R. C. Rumpf, M. Gates, C. L. Kozikowski, and W. A. Davis, "Guided-mode resonance filter compensated to operate on a curved surface," Progress In Electromagnetics Research C, Vol. 40, 93-103, 2013.
doi:10.2528/PIERC13041209
http://www.jpier.org/pierc/pier.php?paper=13041209

References:
1. Magnusson, R. and S. Wang, "New principle for optical filters Applied Physics Letters,", Vol. 61, 1022-1024, 1992.
doi:10.1364/AO.32.002606

2. Wang, S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Applied Optics, Vol. 32, 2606-2613, 1993.
doi:10.1364/OL.23.001556

3. Liu, Z., S. Tibuleac, D. Shin, P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Optics Letters, Vol. 23, 1556-1558, 1998.

4. Magnusson, R. and S.-S. Wang, "Optical guided-mode resonance filter,", Google Patents, 1993.
doi:10.1364/OE.15.003452

5. Rumpf, R. C. and E. G. Johnson, "Modeling fabrication to accurately place GMR resonances," Optics Express, Vol. 15, 3452-3464, 2007.

6. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.
doi:10.1109/8.192167

7. Bertoni, H. L., L.-H. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by a periodic dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 37, 78-83, 1989.
doi:10.1109/TAP.2012.2194665

8. Coves, A., S. Marini, B. Gimeno, and V. Boria, "Full-wave analysis of periodic dielectric frequency-selective surfaces under plane wave excitation," IEEE Transactions on Antennas and Propagation, Vol. 60, 2760-2769, 2012.

9. Li, L. and D. H. Werner, "Design of all-dielectric frequency selective surfaces using genetic algorithms combined with the finite element-boundary integral method," 2005 IEEE Antennas and Propagation Society International Symposium, 376-379, 2005.
doi:10.1109/22.842027

10. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency-selective structures incorporating waveguide gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 553-561, 2000.
doi:10.1109/8.668908

11. Zuffada, C., T. Cwik, and C. Ditchman, "Synthesis of novel all-dielectric grating filters using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 46, 657-663, 1998.
doi:10.1364/AO.45.005740

12. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.
doi:10.1364/JOSAA.20.000481

13. Fehrembach, A.-L. and A. Sentenac, "Study of waveguide grating eigenmodes for unpolarized filtering applications," JOSA A, Vol. 20, 481-488, 2003.
doi:10.1364/JOSAA.18.001261

14. Mizutani, A., H. Kikuta, K. Nakajima, and K. Iwata, "Nonpolarizing guided-mode resonant grating filter for oblique incidence," JOSA A, Vol. 18, 1261-1266, 2001.

15. Cannistra, A., M. Poutous, E. Johnson, and T. Suleski, "Fabrication of guided mode resonance filters on conformal surfaces," Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7927, 23, 2011.
doi:10.1364/OL.36.001155

16. Cannistra, A. T., M. K. Poutous, E. G. Johnson, and T. J. Suleski, "Performance of conformal guided mode resonance filters," Optics Letters, Vol. 36, 1155-1157, 2011.
doi:10.3390/mi2020150

17. Lu, M., H. Zhai, and R. Magnusson, "Focusing light with curved guided-mode resonance reflectors," Micromachines, Vol. 2, 150-156, 2011.
doi:10.1364/JOSA.62.000502

18. Berreman, D. W., "Optics in stratified and anisotropic media: 4 x 4-matrix formulation," JOSA, Vol. 62, 502-510, 1972.
doi:10.1364/JOSAA.14.003125

19. Chen, C.-J., A. Lien, and M. Nathan, "4 x 4 and 2 x 2 matrix formulations for the optics in stratified and biaxial media," JOSA A, Vol. 14, 3125-3134, 1997.
doi:10.1364/JOSA.71.000811

20. Moharam, M. and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA, Vol. 71, 811-818, 1981.
doi:10.2528/PIERB11083107

21. Rumpf, R. C., "Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.
doi:10.2528/PIERB11092006

22. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.


© Copyright 2010 EMW Publishing. All Rights Reserved