Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 93-103


By R. C. Rumpf, M. Gates, C. L. Kozikowski, and W. A. Davis

Full Article PDF (348 KB)

Guided-mode resonance filters (GMRFs) are highly compact structures that can produce a strong frequency response from a single thin layer of dielectric. When a GMRF is formed onto a curved surface, the local angle of incidence varies over the aperture of the device and the overall performance significantly degrades. In the present work, we spatially varied the grating period of a curved GMRF to perfectly compensate for the local angle of incidence. The performance of the curved device actually surpassed that of a flat device because it also compensated for the spherical wave front from the source. This paper summarizes our design process and experimental results obtained around 25 GHz.

R. C. Rumpf, M. Gates, C. L. Kozikowski, and W. A. Davis, "Guided-Mode Resonance Filter Compensated to Operate on a Curved Surface," Progress In Electromagnetics Research C, Vol. 40, 93-103, 2013.

1. Magnusson, R. and S. Wang, "New principle for optical filters Applied Physics Letters,", Vol. 61, 1022-1024, 1992.

2. Wang, S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Applied Optics, Vol. 32, 2606-2613, 1993.

3. Liu, Z., S. Tibuleac, D. Shin, P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Optics Letters, Vol. 23, 1556-1558, 1998.

4. Magnusson, R. and S.-S. Wang, "Optical guided-mode resonance filter,", Google Patents, 1993.

5. Rumpf, R. C. and E. G. Johnson, "Modeling fabrication to accurately place GMR resonances," Optics Express, Vol. 15, 3452-3464, 2007.

6. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.

7. Bertoni, H. L., L.-H. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by a periodic dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 37, 78-83, 1989.

8. Coves, A., S. Marini, B. Gimeno, and V. Boria, "Full-wave analysis of periodic dielectric frequency-selective surfaces under plane wave excitation," IEEE Transactions on Antennas and Propagation, Vol. 60, 2760-2769, 2012.

9. Li, L. and D. H. Werner, "Design of all-dielectric frequency selective surfaces using genetic algorithms combined with the finite element-boundary integral method," 2005 IEEE Antennas and Propagation Society International Symposium, 376-379, 2005.

10. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency-selective structures incorporating waveguide gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 553-561, 2000.

11. Zuffada, C., T. Cwik, and C. Ditchman, "Synthesis of novel all-dielectric grating filters using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 46, 657-663, 1998.

12. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.

13. Fehrembach, A.-L. and A. Sentenac, "Study of waveguide grating eigenmodes for unpolarized filtering applications," JOSA A, Vol. 20, 481-488, 2003.

14. Mizutani, A., H. Kikuta, K. Nakajima, and K. Iwata, "Nonpolarizing guided-mode resonant grating filter for oblique incidence," JOSA A, Vol. 18, 1261-1266, 2001.

15. Cannistra, A., M. Poutous, E. Johnson, and T. Suleski, "Fabrication of guided mode resonance filters on conformal surfaces," Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7927, 23, 2011.

16. Cannistra, A. T., M. K. Poutous, E. G. Johnson, and T. J. Suleski, "Performance of conformal guided mode resonance filters," Optics Letters, Vol. 36, 1155-1157, 2011.

17. Lu, M., H. Zhai, and R. Magnusson, "Focusing light with curved guided-mode resonance reflectors," Micromachines, Vol. 2, 150-156, 2011.

18. Berreman, D. W., "Optics in stratified and anisotropic media: 4 x 4-matrix formulation," JOSA, Vol. 62, 502-510, 1972.

19. Chen, C.-J., A. Lien, and M. Nathan, "4 x 4 and 2 x 2 matrix formulations for the optics in stratified and biaxial media," JOSA A, Vol. 14, 3125-3134, 1997.

20. Moharam, M. and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA, Vol. 71, 811-818, 1981.

21. Rumpf, R. C., "Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.

22. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.

© Copyright 2010 EMW Publishing. All Rights Reserved