PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 46 > pp. 117-124

COMPLEMENTARY SPIRAL RESONATORS FOR ULTRAWIDEBAND SUPPRESSION OF SIMULTANEOUS SWITCHING NOISE IN HIGH-SPEED CIRCUITS

By A. Ghobadi, K. Topalli, N. Biyikli, and A. K. Okyay

Full Article PDF (445 KB)

Abstract:
In this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN) mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span ranging from 340 MHz to beyond 10 GHz. By placing a slit in the co-centric rings, lower cut-off frequency is reduced to 150 MHz, keeping the rest of the structure unaltered. Finally, the power plane structure with modified complementary spiral resonators (MCSRs) is designed, fabricated, and evaluated experimentally. Measurement and simulation results are in well-agreement.

Citation:
A. Ghobadi, K. Topalli, N. Biyikli, and A. K. Okyay, "Complementary Spiral Resonators for Ultrawideband Suppression of Simultaneous Switching Noise in High-Speed Circuits," Progress In Electromagnetics Research C, Vol. 46, 117-124, 2014.
doi:10.2528/PIERC13120208

References:
1. Ren, K., C. Y. Wu, and L. C. Zhang, "The restriction on delta-I noise along the power/ground layer in the high speed digital printed circuit board," Proc. IEEE Int. Electromagn. Compat. Symp., 511-516, 1998.

2. Kamgaing, , T. and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw., Wireless Component Lett., Vol. 13, No. 1, 21-23, 2003.
doi:10.1109/LMWC.2002.807713

3. Wu, T. L., S. T. Chen, J. N. Hwang, and Y. H. Lin, "Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB," IEEE Trans. on Electromagn. Compat., Vol. 46, No. 1, 33-45, 2004.
doi:10.1109/TEMC.2004.823680

4. Swaminathan, M., "Power distribution networks for system-on-package: Status and challenges," IEEE Trans. on Advanced Packaging, Vol. 27, No. 2, 286-230, 2004.
doi:10.1109/TADVP.2004.831897

5. Lei, G. T., R. W. Techentin, and B. K. Gilbert, "High frequency characterization of power/ground-plane structures ," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 5, 562-569, 1999.
doi:10.1109/22.763156

6. Ramahi, O., V. Subramanian, and B. Archambeault, "A simple finite difference frequency-domain (FDFD) algorithm for analysis of switching noise in printed circuit boards and packages," IEEE Trans. on Advanced Packaging, Vol. 26, No. 2, 191-198, 2003.
doi:10.1109/TADVP.2003.817477

7. Archambeault, B., "Analyzing power/ground plane decoupling performance using the partial element equivalent circuit (PEEC) simulation technique," IEEE Int. Electromagn. Compat. Symp., 779-784, 2000.

8. Archambeault, B. and A. E. Ruehli, "Analysis of power/ground plane EMI decoupling performance using the partial-element equivalent circuit technique," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 4, 437-445, 2001.
doi:10.1109/15.974623

9. Madou, A. and L. Martens, "Electrical behavior of decoupling capacitors embedded in multilayered PCBs," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 4, 549-556, 2001.
doi:10.1109/15.974634

10. Xu, M., T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, "Power-bus decoupling with embedded capacitance in printed circuit board design," IEEE Trans. on Electromagn. Compat., Vol. 45, No. 1, 22-30, 2003.
doi:10.1109/TEMC.2002.808075

11. Shahparnia, S. and O. Ramahi, "Miniaturised electromagnetic bandgap structures for broadband switching noise suppression in PCBs," Electron. Lett., Vol. 41, No. 9, 519-520, 2005.
doi:10.1049/el:20050445

12. Kwon, J. H. and J. G. Yook, "Partial placement of EBG on both power and ground planes for broadband suppression of simultaneous switching noise ," IEICE Trans. on Commun., Vol. E92-B, No. 7, 2550-2553, 2009.
doi:10.1587/transcom.E92.B.2550

13. Shahparnia, S. and O. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Trans. on Electromagn. Compat., Vol. 46, No. 4, 580-587, 2004.
doi:10.1109/TEMC.2004.837671

14. Kamgaing, T. and O. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wirel. Compon. Lett., Vol. 13, No. 1, 21-23, 2003.
doi:10.1109/LMWC.2002.807713

15. Chang, C. S., M. P. Houng, D. B. Lin, K. C. Hung, and I. T. Tang, "Simultaneous switching noise mitigation capability with low parasitic e®ect using aperiodic high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 4, 149-158, 2008.
doi:10.2528/PIERL08082902

16. Chang, C. S., J. Y. Li, W. J. Lin, M. P. Houng, L. S. Chen, and D. B. Lin, "Controlling the frequency of simultaneous switching noise suppression by using embedded dielectric resonators in high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009.
doi:10.2528/PIERL09082406

17. Bait-suwailam, M. M. and O. M. Ramahi, "Simultaneous switching noise mitigation in high-speed circuits using complementary split ring resonators," IET Electron. Lett., Vol. 46, 563-564, 2010.
doi:10.1049/el.2010.0583

18. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Condens. Matter, Vol. 69, 14402, 2004.
doi:10.1103/PhysRevB.69.014402

19. Baena, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines ," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

20. Marques, , R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and roadside-coupled split ring resonators for metamaterial design. Theory and experiments," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 1, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

21. Isik, O. and K. P. Esselle, "Backward wave microstrip lines with complementary spiral resonators," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 10, 2008.
doi:10.1109/TAP.2008.929441

22. Falcone, F. , T. Lopetegi, J. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029


© Copyright 2010 EMW Publishing. All Rights Reserved