Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 39-52


By M.-M. Chiou, J.-F. Kiang, and R. Mittra

Full Article PDF (861 KB)

The visibility distribution, which is related to the configuration of stations, can be categorized into different features, each having different levels of data number density. A computationally efficient multi-feature image reconstruction algorithm, well adapted for next-generation telescopes, is proposed based on this observation, which is more flexible to handle massive amount of visibility data expected in the future. In reconstructing the M87 image with the visibility data simulated on the Low-Frequency Array (LOFAR), this algorithm turns out to be a few hundreds to one thousand times faster and is more resilient to noises than the conventional algorithms.

M.-M. Chiou, J.-F. Kiang, and R. Mittra, "A Multi-Feature Visibility Processing Algorithm for Radio Interferometric Imaging on Next-Generation Telescopes," Progress In Electromagnetics Research C, Vol. 52, 39-52, 2014.

1. Thompson, A. R., J. M. Moran, and G. W. Swenson Jr., nterferometry and Synthesis in Radio Astronomy, 2nd Edition, Wiley-VCH, 2004.

2. Baars, J. W. M., L. R. D'Addario, and A. R. Thompson, "Radio astronomy in the early twenty-first century," Proc. IEEE, Vol. 97, No. 8, 1377-1381, Aug. 2009.

3. Gull, S. F. and J. Skilling, "Maximum entropy method in image processing," IEE Proc. Commun. Radar Signal Process., Vol. 131, No. 6, 646-659, 1984.

4. Molina, R., J. Nunez, F. J. Cortijo, and J. Mateos, "Image restoration in astronomy: A Bayesian perspective," IEEE Signal Process. Mag., Vol. 18, No. 2, 11-29, 2001.

5. Chen, B.-D. and L. Amir, "Parametric high resolution techniques for radio astronomical imaging," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 670-684, 2008.

6. Rau, U., S. Bhatnagar, M. A. Voronkov, and T. J. Cornwell, "Advances in calibration and imaging techniques in radio interferometry," Proc. IEEE, Vol. 97, No. 8, 1472-1481, Aug. 2009.

7. Levanda, R. and A. Leshem, "Synthetic aperture radio telescopes," IEEE Trans. Signal Process., Vol. 27, No. 1, 14-29, Jan. 2010.

8. Kundur, D. and D. Hztzinakos, "Blind image deconvolution," IEEE Signal Process. Mag., Vol. 13, No. 3, 43-64, May 1996.

9. Hogbom, J. A., "Aperture synthesis with a non-regular distribution of interferometers baselines," A & AS, Vol. 15, 417-426, 1974.

10. Cornwell, T. J., "Multiscale CLEAN deconvolution of radio synthesis images," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 793-801, Oct. 2008.

11. Bobin, J., J.-L. Starck, and R. Ottensamer, "Compressed sensing in astronomy," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 718-726, Oct. 2008.

12. Carrillo, R. E., J. D. McEwen, and Y. Wiaux, "Sparsity averaging reweighted analysis (SARA): A novel algorithm for radio-interferometric imaging," Mon. Not. Roy. Astronom. Soc., 591-594, Jun. 2012.

13. Carrillo, R. E., J. D. McEwen, D. van de Ville, J.-P. Thiran, and Y. Wiaux, "Sparsity averaging for compressive imaging," IEEE Signal Process. Lett., Vol. 20, No. 6, 591-594, Jun. 2013.

14. Carrillo, R. E., J. D. McEwen, and Y. Wiaux, "PURIFY: A new approach to radio-interferometric imaging," Mon. Not. Roy. Astronom. Soc., Vol. 439, No. 4, 3591-3604, Feb. 2014.

15. Johnston, S., et al., "Science with the Astralian square kilometre array pathfinder," Pub. Astronom. Soc. Australia, Vol. 24, 174-188, Dec. 2007.

16. Tingay, S. J., et al., "The Murchison widefield array: The square kilometre array precursor at low radio frequencies," Pub. Astronom. Soc. Australia, Vol. 30, e007, 2013.

17. Jonas, J. L., "MeerKAT --- The South African array with composite dishes and wide-band single pixel feeds," Proc. IEEE, Vol. 97, No. 8, 1522-1530, Aug. 2009.

18. Fomalont, E. and M. Reid, "Microarcsecond astrometry using the SKA," New Astronomy Rev., Vol. 48, 1473-1482, Sep. 2004.

19. Dewdney, P. E., P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, "The square kilometre array," Proc. IEEE, Vol. 97, No. 8, 1482-1496, Aug. 2009.

20. Van Haarlem, M. P., et al., "LOFAR: The low-frequency array," Astron. Astrophys., Vol. 556, A2, Jul. 16, 2013.

21. Marco, D. V., W. G. Andre, and N. Ronald, "The LOFAR telescope: System architecture and signal processing," Proc. IEEE, Vol. 97, No. 8, 1431-1437, Aug. 2009.

22. Stefan, J. W., "In situ antenna performance evaluation of the LOFAR phased array radio telescope," IEEE Trans. Antennas Propagat., Vol. 59, No. 6, 1981-1989, Jun. 2011.

23. Sutter, P. M., et al., "Probabilistic image reconstruction for radio interferometers," Mon. Not. Roy. Astronom. Soc., Vol. 438, No. 1, 768-778, Sep. 2013.

24. Cornwell, T. J., K. Golap, and S. Bhatnagar, "The non-coplanar baselines effect in radio interferometry: The W-projection algorithm," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 647-657, Oct. 2008.

25. Thompson, A. and R. Bracewell, "Interpolation and Fourier transformation of fringe visibilities," Astron. J., Vol. 79, No. 1, 11V24, 1974.

26. Thiebaut, E. and J. F. Giovannelli, "Image reconstruction in optical interferometry using a general framework to formally describe and compare different methods," IEEE Signal Process. Mag., Vol. 27, No. 1, 97-109, Jan. 2010.

27. De Gasperin, F., et al., "M87 at metre wavelengths: The LOFAR picture," Astron. Astrophys.,, Vol. 547, A56, Oct. 2012.

28. Griva, I., G. N. Stephen, and S. Ariela, Linear and Nonlinear Optimization, Ch. 13, Soc. Indust. Applied Math., 2009.

29. Serge, M. and M. M. Laurent, "Convex approximation to the likelihood criterion for aperture synthesis imaging," J. Opt. Soc. Am. A, Vol. 22, 2348-2356, Nov. 2005.

© Copyright 2010 EMW Publishing. All Rights Reserved