Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 57 > pp. 181-191


By J. Zhao, C. Yu, J. Yu, Y. Liu, and S. Li

Full Article PDF (260 KB)

This paper proposes a robust combination of digital predistortion (DPD) and crest factor reduction (CFR) for radio frequency (RF) power amplifiers (PAs). It is constructed using the architecture of CFR-DPD connected with a compensation module (CM). The compensation module is introduced to achieve mutual compensation between the output signals of CFR and DPD, and this can reduce the damage to the signal by CFR. The combination of CFR-DPD-CM provides the means to exploit margins in the transmitter performance, allowing the tradeoff among peak-to-average power ratio (PAPR), adjacent channel power ratio (ACPR) and error vector magnitude (EVM). The proposed combination of CFR-DPD-CM is assessed using a GaN Class-F PA driven by two modulated signals (a 4-carrier OFDM signal and a WCDMA 1001 signal with 20-MHz bandwidth), and a GaN Doherty PA driven by a 15-MHz long-term evolution (LTE) signal. The experimental results show that when the CFR reduces the PAPR about 4 dB, applying the proposed combination of CFR-DPD-CM, the average reduction of ACPR is 5.12 dB, and the average reduction of EVM is 1.26% compared with the conventional architecture of CFR-DPD.

J. Zhao, C. Yu, J. Yu, Y. Liu, and S. Li, "A Robust Augmented Combination of Digital Predistortion and Crest Factor Reduction for RF Power Amplifiers," Progress In Electromagnetics Research C, Vol. 57, 181-191, 2015.

1. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.

2. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.

3. Du, T., C. Yu, Y. Liu, J. Gao, S. Li, and Y. Wu, "A new accurate Volterra-based model for behavioral modeling and digital predistortion of RF power amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012.

4. Jiang, T., Y. Yang, and Y.-H. Song, "Exponential companding technique for PAPR reduction in OFDM systems," IEEE Trans. Broadcast., Vol. 51, No. 2, 244-248, Jun. 2005.

5. Krongold, B. S. and D. L. Jones, "PAR reduction in OFDM via active constellation extension," IEEE Trans. Broadcast., Vol. 49, No. 3, 258-268, Sep. 2003.

6. Baxley, R. J., C. Zhao, and G. T. Zhou, "Constrained clipping for crest factor reduction in OFDM," IEEE Trans. Broadcast., Vol. 52, No. 4, 570-575, 2006.

7. Armstrong, J., "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering," Electron. Lett., Vol. 38, No. 5, 246-247, 2002.

8. Gilabert, P. L., M. E. Gadringer, G. Montoro, M. L. Mayer, D. D. Silveira, E. Bertran, and G. Magerl, "An efficient combination of digital predistortion and OFDM clipping for power amplifiers," Int. J. RF Microw. Compu. Aid. Eng., 583-591, 2009.

9. Helaoui, M., S. Boumaiza, A. Ghazel, and F. M. Ghannouchi, "On the RF/DSP design for efficiency of OFDM transmitters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2355-2361, 2005.

10. Sperlich, R., Y. Park, G. Copeland, and J. S. Kenney, "Power amplifier linearization with digital pre-distortion and crest factor reduction," IEEE MTT-S Int. Microwave Symposium (IMS), 669-672, 2004.

11. Nader, C., P. N. Landin, W. V. Moer, N. Bjorsell, and P. Handel, "Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3504-3511, 2011.

12. Nader, C., P. Handel, and N. Bjorsell, "Peak-to-average power reduction of OFDM signals by convex optimization: Experimental validation and performance optimization," IEEE Trans. Instrum. Meas., Vol. 60, No. 2, 473-479, 2011.

13. Nader, C., P. N. Landin, W. V. Moer, N. Bjorsell, P. Handel, and D. R¨onnow, "Peak-power controlling technique for enhancing digital pre-distortion of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 11, 3571-3581, 2012.

14. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Synergetic crest factor reduction and baseband digital predistortion for adaptive 3G Doherty power amplifier linearizer design," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2602-2608, 2008.

15. Zhu, A., P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, "Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1524-1534, 2008.

16. Davis, J. A. and J. Jedwab, "Peak-to-mean power control and error correction for OFDM transmission using golay sequences and reed-muller codes," Electron. Lett., Vol. 33, No. 4, 267-268, 1997.

17. Braithwaite, R. N., "A combined approach to digital predistortion and crest factor reduction for the linearization of an RF power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 291-302, 2013.

18. Ding, L., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "Memory polynomial predistorter based on the indirect learning architecture," IEEE Global Telecommunications Conference, Vol. 1, 967-971, Nov. 2002.

19. Ding, L., Z. Ma, D. R. Morgan, M. Zierdt, and J. Pastalan, "A least-squares/newton method for digital predistortion of wideband signals," IEEE Trans. Commun., Vol. 54, No. 5, 833-840, 2006.

20. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Effects of crest factor reduction on the predistortion performance for multi-carrier 3G RF power amplifiers," IEEE MTT-S Int. Microwave Symposium (IMS), 1085-1088, 2009.

21. Ai, B., Z. Yang, C. Pan, T. Zhang, and J. Ge, "Effects of PAPR reduction on HPA predistortion," IEEE Trans. Consum. Electr., Vol. 51, No. 4, 1143-1147, 2005.

22. Farabegoli, A., B. Sogl, J. E. Mueller, and R. Weigel, "Advanced transmitters with combined crest factor reduction and digital predistortion techniques," IEEE International Conference on Radio and Wireless Symposium (RWS), 133-135, Newport Beach, Jan. 2014.

© Copyright 2010 EMW Publishing. All Rights Reserved