PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 61 > pp. 17-26

COMMON-MODE SUPPRESSION DESIGN FOR GIGAHERTZ DIFFERENTIAL SIGNALS BASED ON C-SLOTLINE

By W. Zhuang, Y. Shi, W. Tang, and Y. Dai

Full Article PDF (1,198 KB)

Abstract:
For wideband common-mode noise suppression in high-speed differential signals, a low-cost compact filter is proposed and designed by etching two coupled C-slotlines on the ground plane. It is found that the bandwidth of the common-mode stopband over -10 dB is from 2.4 GHz to 6.35 GHz with no degradation of the differential-mode insertion loss and group delay within the wide common-mode stopband. In time domain, the differential signal eye diagram is not deteriorated as well. In addition, an equivalent circuit model is developed and provides a quickly prediction of the common-mode stopband. The results show a good consistency between the simulations and measurements.

Citation:
W. Zhuang, Y. Shi, W. Tang, and Y. Dai, "Common-Mode Suppression Design for Gigahertz Differential Signals Based on C-Slotline," Progress In Electromagnetics Research C, Vol. 61, 17-26, 2016.
doi:10.2528/PIERC15090603

References:
1. Liu, W.-T., C.-H. Tsai, T.-W. Han, and T.-L. Wu, "An embedded common-mode suppression filter for ghz differential signals using periodic defected ground plane," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 4, 248-250, 2008.
doi:10.1109/LMWC.2008.918883

2. Wu, S.-J., C.-H. Tsai, T.-L. Wu, and T. Itoh, "A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 4, 848-855, 2009.
doi:10.1109/TMTT.2009.2015087

3. Tsai, C.-H. and T.-L. Wu, "A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 195-202, 2010.
doi:10.1109/TMTT.2009.2036413

4. Yanagisawa, K., F. Zhang, T. Sato, and Y. Miura, "A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil," IEEE Trans. Magn., Vol. 41, No. 10, 3571-3573, 2005.
doi:10.1109/TMAG.2005.855189

5. Deng, J. and K. Y. See, "In-circuit characteristics of common-mode chokes," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 451-454, 2007.
doi:10.1109/TEMC.2007.897155

6. Naqui, J., A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martin, "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 10, 3023-3033, 2012.
doi:10.1109/TMTT.2012.2209675

7. Hsiao, C.-Y., C.-H. Tsai, C.-N. Chiu, and T.-L. Wu, "Radiation suppression for cable-attached packages utilizing a compact embedded common-mode filter," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 2, No. 10, 1696-1703, 2012.
doi:10.1109/TCPMT.2012.2207458

8. De Paulis, F., L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, "Compact configuration for common mode filter design based on planar electromagnetic bandgap structures," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 646-654, 2012.
doi:10.1109/TEMC.2011.2170427

9. Fernndez-Prieto, A., J. Martel-Villagran, F. Medina, F. Mesa, S. Qian, J. S. Hong, J. Naqui, and F. Martin, "Dual-band differential filter using broadband common-mode rejection artificial transmission line," Progress In Electromagnetics Research, Vol. 139, 779-797, 2013.
doi:10.2528/PIER13041405

10. Fernndez-Prieto, A., S. Qian, J. S. Hong, J. Martel-Villagran, F. Medina, F. Mesa, J. Naqui, and F. Martin, "Common-mode suppression for balanced bandpass filters in multilayer liquid crystal polymer technology," IET Microw. Antennas Propag., Vol. 9, No. 12, 1249-1253, 2015.
doi:10.1049/iet-map.2014.0258

11. Hsu, S.-K., J.-C. Yen, and T.-L. Wu, "A novel compact forward-wave directional coupler design using periodical patterned ground structure," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 3, 1249-1257, 2011.
doi:10.1109/TMTT.2011.2104978

12. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, 2nd Ed., Artech House, Norwood, MA, 1996.

13. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Norwood, MA, 1980.

14. Knorr, J. B. and K.-D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 7, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624

15. Aikawa, M. and Hiroyo, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 6, 523-528, 1980.
doi:10.1109/TMTT.1980.1130113

16. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley, New York, NY, 2001.
doi:10.1002/0471224758

17. Hsu, S.-K., C. H. Tsai, and T.-L. Wu, "A novel miniaturized forward-wave directional coupler with periodical mushroom-shaped ground plane," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 8, 2277-2283, 2010.
doi:10.1109/TMTT.2010.2052869

18., "Ansys Corporation, high frequency structure simulator,", Available: http://www.anasys.com/.
doi:10.1109/TMTT.2010.2052869

19. Simons, R. N., "Ansys Corporation, ansoft designer V6.,", Available: http://www.anasys.com/.


© Copyright 2010 EMW Publishing. All Rights Reserved