Vol. 60
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-12-09
Outage Probability and Bit-Error Rate for Communication Systems with Gaussian-Schell Electromagnetism Beams in Non-Kolmogorov Raining Turbulence
By
Progress In Electromagnetics Research C, Vol. 60, 105-114, 2015
Abstract
Two major performance degrading factors in free space optical communication systems are rainfall and atmospheric turbulence. We study the outage probability and bit-error rate for free-space communication links with spatial diversity and Gaussian-Schell electromagnetism beams over the raining turbulence fading channels by double inverse Gaussian distribution proposed in this paper. Assuming intensity-modulation/direct detection with on-off keying and perfect channel state information, we derive expressions of average bit-error rate and outage probability of multiple-input multiple output free space optical communication systems over double inverse Gaussian model. The effects of scintillation index of raining turbulence, spatially coherence of source, pointing errors and spectral index of non-Kolmogorov turbulence on the outage probability and bit-error rate of multiple-input multiple-output free space optical communication systems are examined.
Citation
Ye Li, Yixin Zhang, Zhengda Hu, and Qiu Wang, "Outage Probability and Bit-Error Rate for Communication Systems with Gaussian-Schell Electromagnetism Beams in Non-Kolmogorov Raining Turbulence," Progress In Electromagnetics Research C, Vol. 60, 105-114, 2015.
doi:10.2528/PIERC15102303
References

1. Majumdar, A. K., Advanced Free Space Optics (FSO): A System Approach, Springer, New York, 2014.

2. Andrews, L. and R. L. Phillips, Laser Beam Propagation Through Random Media, SPIE, Bellingham, WA, 2005.
doi:10.1117/3.626196

3. Zhang, Y. X., C. Si, Y. Wang, J. Wang, and J. Jia, "Capacity for non-Kolmogorov turbulent optical links with beam wander and pointing errors," J. Opt. Laser Techno., Vol. 43, No. 7, 1338-1342, 2011.
doi:10.1016/j.optlastec.2011.04.001

4. Yu, J. Y., Y. H. Chen, L. Liu, X. L. Liu, and Y. J. Cai, "Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence," Opt. Express, Vol. 23, No. 10, 13467-13481, 2015.
doi:10.1364/OE.23.013467

5. Baykal, Y. and H. Gerçekcioğlu, "Application of equivalent structure constant in scintillations and BER found for non-Kolmogorov spectrum," Opt. Commun., Vol. 310, 109-113, 2014.
doi:10.1016/j.optcom.2013.07.069

6. Eyyuboğlu, H. T., "Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams," Opt. Commun., Vol. 339, 141-147, 2015.
doi:10.1016/j.optcom.2014.11.070

7. Farid, A. A. and S. Hranilovic, "Outage capacity optimization for free-space optical links with pointing errors," J. Lightw. Technol., Vol. 25, No. 7, 1702-1710, 2007.
doi:10.1109/JLT.2007.899174

8. Grabner, M. and V. Kvicera, "Multiple scattering in rain and fog on free-space optical links," J. Lightw. Technol., Vol. 32, No. 3, 513-520, 2014.
doi:10.1109/JLT.2013.2294356

9. Lin, S. H., "A method for calculating rain attenuation distributions on microwave paths," Bell Syst. Tech. J., Vol. 54, No. 6, 1051-1083, 1975.
doi:10.1002/j.1538-7305.1975.tb02882.x

10. Morita, K. and I. Higuti, "Prediction methods for rain attenuation distributions of micro and millimeter waves," Rev. Electron. Commun. Labs, Vol. 24, No. 7, 651-668, 1976.

11. Livieratos, S., V. Katsambas, and J. D. Kanellopoulos, "A Global method for the prediction of the slant path rain attenuation statistics," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 5, 713-724, 2000.
doi:10.1163/156939300X01436

12. Panagopoulos, A. D., P. D. M. Arapoglou, J. D. Kanellopoulos, and P. G. Cottis, "Long-term rain attenuation probability and site diversity gain prediction formulas," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2307-2313, 2005.
doi:10.1109/TAP.2005.850762

13. Kourogiorgas, C., A. D. Panagopoulos, and J. D. Kanellopoulos, "On the earth-space site diversity modeling: A novel physical-mathematical outage prediction model," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4391-4397, 2012.
doi:10.1109/TAP.2012.2207073

14. Kourogiorgas, C., "A new method for the prediction of outage probability of LOS terrestrial links operating above 10 GHz," IEEE Antenn. Wireless Propaga. Lett., Vol. 12, 516-519, 2013.
doi:10.1109/LAWP.2013.2254460

15. Kourogiorgas, C. and A. D. Panagopoulos, "New physical-mathematical model for predicting slant-path rain attenuation statistics based on inverse Gaussian distribution," IET Microw. Antennas Propag., Vol. 7, No. 12, 970-975, 2013.
doi:10.1049/iet-map.2013.0206

16. Navidpour, S. M., M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Tran. Wireless Commun., Vol. 6, No. 8, 2813-2819, 2007.
doi:10.1109/TWC.2007.06109

17. Chatzidiamantis, N. D. and H. G. Sanddalidis, "Inverse Gaussian modeling of turbulence-induced fading in free-space optical systems," J. Lightw. Technol., Vol. 29, No. 10, 1590-1596, 2011.
doi:10.1109/JLT.2011.2132792

18. Wang, F., Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, "Average intensity and spreading of partially coherent standard and elegant laguerre-gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.
doi:10.2528/PIER10021901

19. Li, Y. Q., Z.-S. Wu, and L. G. Wang, "Polarization characteristics of a partially coherent gaussian schell-model beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
doi:10.2528/PIER11092201

20. Wang, F., X. Liu, and Y. Cai, "Propagation of partially coherent beam in turbulent atmosphere: A review," IEEE Trans. Commun., Vol. 150, 123-143, 2015.

21. Trigui, I., A. Laourine, S. Affes, and A. Stephenne, "The inverse Gaussian distribution in wireless channels: Second-order statistics and channel capacity," IEEE Trans. Commun., Vol. 60, No. 11, 3167-3173, 2012.
doi:10.1109/TCOMM.2012.081512.100253

22. Karmeshu and R. Agrawal, "On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels," Wireless Commun. Mobile Comput., Vol. 7, No. 1, 1-7, 2007.
doi:10.1002/wcm.295

23. Mohammed, N. A., A. S. El-Wakeel, and M. H. Aly, "Performance evaluation of FSO link under NRZ-RZ line codes, different weather conditions and receiver types in the presence of pointing errors," J. Elec. Electronic Enginee., Vol. 6, No. 12, 28-35, 2012.

24. Deng, P., M. Kavehrad, Z. Liu, Z. Zhou, and X. Yuan, "Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence," Opt. Express, Vol. 21, No. 13, 15213-15229, 2013.
doi:10.1364/OE.21.015213

25. Borah, D. K. and D. G. Voelz, "Spatially partially coherent beam parameter optimization for free space optical communications," Opt. Express, Vol. 18, No. 20, 20746-20758, 2010.
doi:10.1364/OE.18.020746

26. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, "Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence," Opt. Enginee., Vol. 47, No. 2, 026003, 2008.
doi:10.1117/1.2870113

27. Wolfram, Wolfram function site, 2010, Available: http://function.wolfram.com.

28. Huang, Y., A. Zeng, Z. Gao, and B. Zhang, "Beam wander of partially coherent array beams through non-Kolmogorov turbulence," Opt. Lett., Vol. 40, No. 8, 1619-1622, 2015.
doi:10.1364/OL.40.001619

29. Andrews, L. C., R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications, SPIE, Bellingham, WA, 2001.
doi:10.1117/3.412858