PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 11-22

BEAM-FORMING AND BEAM-STEERING CAPABILITIES OF A RECONFIGURABLE PLASMA ANTENNA ARRAY

By A. D. J. Fernandez-Olvera, D. Melazzi, and V. Lancellotti

Full Article PDF (656 KB)

Abstract:
We present the numerical parametric study of a reconfigurable plasma antenna array (PAA) composed of a metallic half-wavelength dipole and a set of cylindrical plasma discharges arranged in a planar square lattice. Our results, obtained with the linear embedding via Green's operators (LEGO) method, indicate that beam-forming and beam-steering functionality can be achieved and controlled by appropriately choosing the number and position of the active plasma discharges around the dipole. Furthermore, we show that an external static magnetic field and the plasma density have a noticeable effect on the radiation pattern of the antenna.

Citation:
A. D. J. Fernandez-Olvera, D. Melazzi, and V. Lancellotti, "Beam-Forming and Beam-Steering Capabilities of a Reconfigurable Plasma Antenna Array," Progress In Electromagnetics Research C, Vol. 65, 11-22, 2016.
doi:10.2528/PIERC16031506

References:
1. Balanis, C. A., Antenna Theory: Analysis and Design, 2 Ed., John Wiley & Sons, Inc., New York, 1997.

2. King, R.W. P., The Theory of Linear Antennas, Harvard University Press, Cambridge, MA, 1956.
doi:10.4159/harvard.9780674182189

3. Kumar, R. and D. Bora, "Wireless communication capability of a reconfigurable plasma antenna," Journal of Applied Physics, Vol. 109, 063303, 2011.
doi:10.1063/1.3564937

4. Manheimer, W., "Plasma reflectors for electronic beam steering in radar systems," IEEE Transactions on Plasma Science, Vol. 19, No. 6, 1128, 1991.
doi:10.1109/27.125044

5. Alexeff, I., T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloliand, and P. Hulloli, "Experimental and theoretical results with plasma antennas," IEEE Transactions on Plasma Science, Vol. 34, April 2006.

6. Grewal, G. and G. Hanson, "Optically-controlled solid-state plasma leaky-wave antenna," Microwave Opt. Lett., Vol. 39, 450-453, 2003.
doi:10.1002/mop.11245

7. Kang, W., M. Rader, and I. Alexeff, "A conceptual study of stealth plasma antenna," 23rd IEEE International Conference on Plasma Science, No. 4IP07, Boston, MA, USA, June 1996.

8. Moisan, M. and Z. Zakrzewski, "Plasma sources based on the propagation of electromagnetic surface waves," J. Phys. D, Appl. Phys., Vol. 24, 1025-1084, 1991.
doi:10.1088/0022-3727/24/7/001

9. Borg, G., J. Harris, D. Miljak, and N. Martin, "Application of plasma coulmns to radiofrequency antennas," Applied Physics Letters, Vol. 74, 3272-3274, May 1999.
doi:10.1063/1.123317

10. Borg, G., J. Harris, N. Martin, D. Thorncraft, R. Milliken, D. Miljak, B. Kwan, T. Ng, and J. Kircher, "Plasma as antennas: Theory, experiment and applications," Physics of Plasmas, Vol. 7, 2198-2202, May 2000.
doi:10.1063/1.874041

11. Stix, T., Plasma Waves, Springer-Verlag, NewYork Inc., 1992.

12. Rayner, J., A. Whichello, and A. Cheetham, "Physical characteristics of plasma antennas," IEEE Transactions on Plasma Science, Vol. 32, 269-281, February 2004.
doi:10.1109/TPS.2004.826019

13. Melazzi, D., V. Lancellotti, M. Manente, D. Pavarin, and T. Anderson, "Numerical investigation into the performance of a reconfigurable gaseous plasma antenna," 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, April 2014.

14. Melazzi, D., V. Lancellotti, M. Manente, D. Pavarin, and T. Anderson, "An integral-equation approach to the analysis and design of plasma antennas," 15th Int. Conf. on Electromagnetics in Advanced Applications (ICEAA ’13), 716-719, Torino, Italy, September 2013.

15. Li, X. and B. Hu, "FDTD analysis of a magneto-plasma antenna with uniform or nonuniform distribution," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 175-178, 2010.

16. Fernandez-Olvera, A. D. J., D. Melazzi, and V. Lancellotti, "Numerical analysis of reconfigurable plasma antenna arrays," 9th European Conference on Antennas and Propagation (EuCAP 2015), Lisbon, Portugal, April 2015.

17. Wu, X., J. Shi, Z. Chen, and B. Xu, "A new plasma antenna of beam-forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012.
doi:10.2528/PIER12021906

18. Kuz'min, G., I. M. K. Rukhadze, V. Tarakanov, and O. Tikhonevich, "Reflector plasma array antennas," J. of Communications Technology and Electronics, Vol. 57, No. 5, 536-542, 2012.
doi:10.1134/S1064226912040110

19. Ja’afar, H., M. T. B. Ali, A. N. B. Dagang, H. M. Zali, and N. A. Halili, "A reconfigurable monopole antenna with fluorescent tubes using plasma windowing concepts for 4.9-GHz application," IEEE Transactions on Plasma Science, Vol. 43, 815-820, March 2015.
doi:10.1109/TPS.2015.2398878

20. Yamamoto, T. and T. Kobayashi, "A reconfigurable antenna using fluorescent lamps," International Symposium on Antennas and Propagation (ISAP 2014), Kaohsiung, Taiwan, December 2014.

21. Hansen, R. C., Microwave Scanning Antennas, Vol. 3, Academic Press, New York and London, 1966.

22. Amitay, N., V. Galindo, and C. P. Wu, "Theory and analysis of Phased Antenna Arrays," Wiley-Interscience, New York, 1972.

23. Fernandez-Olvera, A. D. J., D. Melazzi, and V. Lancellotti, "Parametric study of a reconfigurable plasma antenna array with linear embedding via Green’s operators," International Conference on Electromagnetics in Advanced Applications (ICEAA 2015), Turin, Italy, September 2015.

24. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, November 2009.

25. Lancellotti, V. and A. G. Tijhuis, "Extended linear embedding via Green’s operators for analyzing wave scattering from anisotropic bodies," International Journal of Antennas and Propagation, 11 pages, Article ID 467931, 2014.

26. Lancellotti, V. and D. Melazzi, "Hybrid LEGO-EFIE method applied to antenna problems comprised of anisotropic media," Forum in Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 6, 2014, www.e-fermat.org.

27. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green’s operators and Arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, April 2010.

28. Swanson, D., Plasma Waves, 2 Ed., Institute of Physics, 2003.

29. Lieberman, M. and A. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2 Ed., John Wiley and Sons, 2005.
doi:10.1002/0471724254


© Copyright 2010 EMW Publishing. All Rights Reserved