PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 163-173

DUAL BAND-NOTCHED WIMAX/WLAN OF A COMPACT ULTRAWIDEBAND ANTENNA WITH SPECTRAL AND TIME DOMAINS ANALYSIS FOR BREAST CANCER DETECTION

By A. Kaabal, M. El Halaoui, S. Ahyoud, and A. Asselman

Full Article PDF (999 KB)

Abstract:
A compact Ultra Wideband (UWB) antenna with Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) with dual band-notched characteristics is presented in this article. The antenna design parameters have been optimized by the High Frequency Structural Simulator (HFSS) and CST Microwave Studio to be in contact with biological breast tissues over 3-13 GHz frequency range with dual band-notched characteristics. The proposed antenna is a polygon printed on a low dielectric FR4 substrate fed by a 50-Ω feed line and a partial ground plane in other side. The results exhibit that the proposed antenna shows a wide bandwidth covering from 3 GHz to at least 13 GHz with VSWR<2 and observing band elimination of WiMAX and WLAN bands. The proposed UWB antenna has omnidirectional radiation patterns with a gain variation of 0.5 dBi to 5.2 dBi and low distortion group delay less than 1 ns over the operating frequency range. The simulation and the measurement results show a good agreement. And good ultra-wideband linear transmission performance has been achieved in time domain with a compact dimension of 28×20 mm2.

Citation:
A. Kaabal, M. El Halaoui, S. Ahyoud, and A. Asselman, "Dual Band-Notched WiMAX /WLAN of a Compact Ultrawideband Antenna with Spectral and Time Domains Analysis for Breast Cancer Detection," Progress In Electromagnetics Research C, Vol. 65, 163-173, 2016.
doi:10.2528/PIERC16041504

References:
1., "FCC 1st report and order on ultra-wideband technology,", Feb. 2002.
doi:10.1109/LAWP.2005.852577

2. Low, Z. N., J. H. Cheong, and C. L. Law, "Low-cost PCB antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, 237-239, 2005.
doi:10.2528/PIERM08051903

3. Lim, K.-S., M. Nagalingam, and C.-P. Tan, "Design and construction of microstrip UWB antenna with time domain analysis," Progress In Electromagnetics Research M, Vol. 3, 153-164, 2008.
doi:10.4218/etrij.13.0113.0472

4. Lee, J. N., "Design of an ultra-wideband antenna using a ring resonator with a notch function," ETRI Journal, Vol. 35, No. 6, 1075-1083, Dec. 2013.
doi:10.21553/rev-jec.20

5. Trinh-Van, S. and C. Dao-Ngoc, "Dual band-notched UWB antenna based on electromagnetic band gap structures," REV Journal on Electronics and Communications, Vol. 1, No. 2, Jun. 2011.
doi:10.2528/PIERB13030101

6. Pandey, G. K., H. S. Singh, P. K. Bharti, and M. K. Meshram, "Design of WLAN band notched UWB monopole antenna with stepped geometry using modified EBG structure," Progress In Electromagnetics Research B, Vol. 50, 201-217, 2013.
doi:10.2528/PIERB12113012

7. Peng, L. and C.-L. Ruan, "Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures," Progress In Electromagnetics Research B, Vol. 47, 339-357, 2013.

8. Manurkar, R. P. and V. G. Kasabegoudar, "Four ports wideband pattern diversity MIMO antenna," Global Journal of Researches in Engineering, Vol. 15, No. 3, 2015.
doi:10.2528/PIER07120202

9. Akhoondzadeh-Asl, L., M. Fardis, A. Abolghasemi, and G. R. Dadashzadeh, "Frequency and time domain characteristic of a novel notch frequency UWB antenna," Progress In Electromagnetics Research, Vol. 80, 337-348, 2008.

10. Kaabal, A., S. Ahyoud, and A. Asselman, "A new design of star antenna for ultra wide band applications withWLAN-band-notched using EBG structures," International Journal of Microwave and Optical Technology, Vol. 9, No. 5, 544-548, Sep. 2014.

11. Islam, M. M., M. R. I. Faruque, and M. T. Islam, "A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators," The Scientific World Journal, Vol. 2014, 1-8, 2014.

12. Quintero, G., J.-F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, Jul. 2011.
doi:10.4218/etrij.13.0112.0183

13. Kim, S. H., Z.-J. Jin, Y.-B. Chae, and T.-Y. Yun, "Small internal antenna using multiband, wideband, and high-isolation MIMO techniques," ETRI Journal, Vol. 35, No. 1, 51-57, Feb. 2013.

14. Quintero, G. and D. de Leon, "Analysis and design of ultra-wideband antennas in the spectral and temporal domains," Ecole Polytechnique F´ed´erale de Lausanne, Lausanne, 2010.

15. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, Jul. 2011.
doi:10.1109/JPROC.2008.2008838

16. Wiesbeck, W., G. Adamiuk, and C. Sturm, "Basic properties and design principles of UWB antennas," Proceedings of the IEEE, Vol. 97, No. 2, 372-385, Feb. 2009.

17. Augustin, G., B. P. Chacko, and T. A. Denidni, "Dual port ultra wideband antennas for cognitive radio and diversity applications," Advancement in Microstrip Antennas with Recent Applications, A. Kishk, Ed., InTech, 2013.
doi:10.1109/LAWP.2013.2270933

18. Sugitani, T., S. Kubota, A. Toya, X. Xiao, and T. Kikkawa, "A compact 4×4 planar UWB antenna array for 3-D breast cancer detection," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 733-736, 2013.

19. Zwick, T., L. Zwirello, M. Jalilvand, and X. Li, "Ultra wideband compact near-field imaging system for breast cancer detection," IET Microwaves, Antennas and Propagation, Vol. 9, No. 10, 1009-1014, Jul. 2015.
doi:10.1109/TAP.2011.2109361

20. Chahat, N., M. Zhadobov, R. Sauleau, and K. Ito, "A compact UWB antenna for on-body applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1123-1131, 2011.
doi:10.1109/TAP.2003.817559

21. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, Oct. 2003.
doi:10.1109/LAWP.2005.852577

22. Low, Z. N., J. H. Cheong, and C. L. Law, "Low-cost PCB antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 237-239, 2005.
doi:10.1109/TAP.2005.858598

23. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, Nov. 2005.
doi:10.2528/PIERC14010804

24. Ojaroudi, N., M. Ojaroudi, and Y. Ebazadeh, "UWB/omni-directional microstrip monopole antenna for microwave imaging applications," Progress In Electromagnetics Research C, Vol. 47, 139-146, 2014.
doi:10.2528/PIER07120202

25. Akhoondzadeh-Asl, L., M. Fardis, A. Abolghasemi, and G. R. Dadashzadeh, "Frequency and time domain characteristic of a novel notch frequency UWB antenna," Progress In Electromagnetics Research, Vol. 80, 337-348, 2008.
doi:10.1007/978-3-319-05666-1

26. Linguraru, M. G., C. Oyarzun Laura, R. Shekhar, S. Wesarg, M. ´A. Gonz´alez Ballester, K. Drechsler, Y. Sato, and M. Erdt, Clinical Image-based Procedures. Translational Research in Medical Imaging, Vol. 8680, Springer International Publishing, Cham, 2014.

27. Ghanbari, P. and M. Hajj, "Finite element analysis of tissue electropermeability through the application of electric pulses," J. Bioengineer and Biomedical Sci., Vol. 3, No. 120, 2, 2013.
doi:10.1109/TBME.2015.2434956

28. Bahramiabarghouei, H., E. Porter, A. Santorelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible 16 antenna array for microwave breast cancer detection," EEE Transactions on Biomedical Engineering, Vol. 62, No. 10, 2516-2525, Oct. 2015.
doi:10.1088/0031-9155/41/11/002

29. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10Hz to 20GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, Nov. 1996.

30. Davarcioglu, B., "The dielectric properties of human body tissues at electromagnetic wave frequencies," Int. J. Sci. and Adv. Technol., Vol. 1, No. 5, 12-19, 2011.


© Copyright 2010 EMW Publishing. All Rights Reserved