PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 145-153

AN ACTIVE RESONANT CONDUCTANCE METHOD FOR DESIGN OF LARGE TRAVELING-WAVE-FED SIW LINEAR SLOT ARRAYS

By T. Yu, Z. Wang, H. Zhao, and J. Miao

Full Article PDF (649 KB)

Abstract:
This paper presents an active resonant conductance method (ARCM) for the design of large traveling-wave-fed SIW linear slot arrays. Two key slot parameters, slot offsets and lengths, are derived from excitation coefficients with intermediary active resonant conductance. In this method, both dominant mode mutual coupling which includes external & internal and higher order modes mutual coupling are considered. An efficient way to derive active resonant conductance of slots in large slot arrays is proposed, which makes ARCM feasible for the design of large traveling-wave-fed linear slot arrays with high performance, e.g. low sidelobe level (SLL). Finally, a 16-slot and a 32-slot traveling-wave-fed SIW slot array antennas are designed. The processing of the 32-slot array design shows the efficiency of the proposed method for large arrays. The 16-slot array is fabricated and measured. Results from simulation and measurement verify the proposed method.

Citation:
T. Yu, Z. Wang, H. Zhao, and J. Miao, "An Active Resonant Conductance Method for Design of Large Traveling-Wave-Fed SIW Linear Slot Arrays," Progress In Electromagnetics Research C, Vol. 70, 145-153, 2016.
doi:10.2528/PIERC16103103

References:
1. Gilbert, R. A., "Waveguide slot antenna arrays," Antenna Engineering Handbook, Ch. 9, J. L. Volakis, Ed., McGraw-Hill, 2007.

2. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

3. Deslandes, D., K. Wu, and , "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2516-2526, 2006.
doi:10.1109/TMTT.2006.875807

4. Feng, X. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

5. Yan, L., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 9, 446-448, 2004.
doi:10.1109/LMWC.2004.832081

6. Liu, B., W. Hong, Z. Kuai, X. Yin, G. Luo, J. Chen, H. Tang, and K. Wu, "Substrate Integrated Waveguide (SIW) monopulse slot antenna array," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 275-279, 2009.
doi:10.1109/TAP.2008.2009743

7. Xu, J. F., W. Hong, P. Chen, and K. Wu, "Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas," IET Microwaves, Antennas and Propagation, Vol. 3, No. 5, 790-797, 2009.
doi:10.1049/iet-map.2008.0157

8. Bakhtafrooz, A., A. Borji, B. Dan, and S. Safavinaeini, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706

9. Costanzo, S., G. A. Casula, A. Borgia, and G. Montisci, "Synthesis of slot arrays on integrated waveguides," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 962-965, 2010.
doi:10.1109/LAWP.2010.2087002

10. Hosseininejad, S. E. and N. Komjani, "Optimum design of traveling-wave SIW slot array antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1971-1975, 2013.
doi:10.1109/TAP.2012.2233704

11. Yang, H., et al., "Improved design of low sidelobe substrate integrated waveguide longitudinal slot array," IEEE Antenna and Wireless Propagation Letters, Vol. 13, 2014.

12. Yang, H., G. Montisci, Z. Jin, and Y. Liu, "Improved design of low sidelobe substrate integrated waveguide longitudinal slot array," IEEE Antenna and Wireless Propagation Letters, Vol. 14, 237-240, 2015.
doi:10.1109/LAWP.2014.2360832

13. Elliott, R. S. and L. Kurtz, "The design of small slot arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 2, 214-219, 1978.
doi:10.1109/TAP.1978.1141814

14. Elliott, R. S., "On the design of traveling-wave-fed longitudinal shunt slot arrays," IEEE Trans. Antennas Propag., Vol. 27, No. 5, 717-720, 1979.
doi:10.1109/TAP.1979.1142166

15. Elliott, R. S., "An improved design procedure for small arrays of shunt slots," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 48-53, 1983.
doi:10.1109/TAP.1983.1143002

16. Elliott, R. S. and W. O. Loughlin, "The design of slot arrays including internal mutual coupling," IEEE Trans. Antennas Propag., Vol. 34, No. 9, 1149-1154, 1986.
doi:10.1109/TAP.1986.1143947

17. Yee, H. Y., "The design of large waveguide arrays of shunt slots," IEEE Trans. Antennas Propag., Vol. 40, No. 7, 775-781, 1992.
doi:10.1109/8.155742

18. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proceedings — Microwaves Antennas and Propagation, Vol. 152, No. 1, 35-42, 2005.
doi:10.1049/ip-map:20040726

19. Kazemi, R., A. E. Fathy, S. Yang, and R. A. Sadeghzadeh, "Development of an ultra wide band GCPW to SIW transition," IEEE Radio and Wireless Symposium, 171-174, 2012.


© Copyright 2010 EMW Publishing. All Rights Reserved