PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 123-133

DESIGN OF SHORT-LENGTH POLARIZATION BEAM SPLITTER BASED ON HIGHLY BIREFRINGENT DUAL-CORE PHOTONIC CRYSTAL FIBER

By Z. Wang, F. Yu, Z. Wang, and H. Liu

Full Article PDF (2,294 KB)

Abstract:
We propose an all circular-air-hole short-length polarization beam splitter (PBS) with high extinction ratio based on dual-core highly birefringent photonic crystal fiber (PCF). The impacts of geometrical parameters on the coupling polarization dependence, coupling length ratio (CLR), and propagation property are numerically investigated by the full-vector finite element method (FEM) and the semi-vector beam propagation method (BPM). From simulation results, it is seen that CLRs at the excitation wavelength of 1.55 μm can be optimized to be closed to the desired values of 3/2 and 4/3 to satisfy the sufficient condition of splitting polarized modes by appropriately tailoring the air-hole sizes. For the two optimal structures, the separation of x- and y-polarized modes can be achieved in short lengths of 1.41 mm and 2.89 mm at the operating wavelength of 1.55 μm, respectively. Furthermore, the extinction ratios at λ = 1.55 μm are estimated to be 97.7 dB and 88.1 dB, and the wavelength bandwidths of extinction ratio better than 15 dB are about 107 and 82 nm, respectively.

Citation:
Z. Wang, F. Yu, Z. Wang, and H. Liu, "Design of Short-Length Polarization Beam Splitter Based on Highly Birefringent Dual-Core Photonic Crystal Fiber," Progress In Electromagnetics Research C, Vol. 70, 123-133, 2016.
doi:10.2528/PIERC16112007

References:
1. Peng, G., T. Tjugiarto, and P. Chu, "Polarisation beam splitting using twin-elliptic-core optical fibres," Electron. Lett., Vol. 26, No. 10, 682-683, 1990.
doi:10.1049/el:19900446

2. Hayakawa, T., S. Asakawa, and Y. Kokubun, "ARROW-B type polarization splitter with asymmetric Y-branch fabricated by a self-alignment process," J. Lightwave Technol., Vol. 15, No. 7, 1165-1170, 1997.
doi:10.1109/50.596962

3. Wu, C., T. Wu, and H. Chang, "A novel fabrication method for all-fiber, weakly fused, polarization beam splitters," IEEE Photonic. Tech. L., Vol. 7, No. 7, 786-788, 1995.
doi:10.1109/68.393184

4. Van der Tol, J. J. G. M., J. W. Pedersen, E. G. Metaal, and Y. S. Oei, "Mode evolution type polarization splitter on InGaAsP/InP," IEEE Photonic. Tech. L., Vol. 5, No. 12, 1412-1414, 1993.
doi:10.1109/68.262558

5. Miliou, A. N., R. Srivastava, and R. V. Ramaswamy, "A 1.3 μm directional coupler polarization splitter by ion exchange," J. Lightwave Technol., Vol. 11, No. 2, 220-225, 1993.
doi:10.1109/50.212530

6. Bricheno, T. and V. Baker, "All-fibre polarisation splitter/combiner," Electron. Lett., Vol. 21, No. 6, 251-252, 1985.
doi:10.1049/el:19850179

7. Chen, D., M.-L. V. Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701

8. Zheng, H. and C. Wu, "Photonic crystal fiber with two triangular arrays of semiminor-axisdecreasing elliptical air holes for single-polarization single-mode operation," Opt. Eng., Vol. 50, No. 12, 125003, 2011.
doi:10.1117/1.3657815

9. Yin, A. and L. Xiong, "Characteristics analysis of large solid-core square-lattice photonic crystal fibers with hybrid cladding," Opt. Eng., Vol. 53, No. 1, 016112, 2014.
doi:10.1117/1.OE.53.1.016112

10. Hasana, M. I., M. Selim Habibb, M. Samiul Habibb, and S. M. Abdur Razzakb, "Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber," Opt. Fiber Technol., Vol. 20, No. 1, 32-38, 2014.
doi:10.1016/j.yofte.2013.11.005

11. Mangan, B. J., J. C. Knight, T. A. Birks, and P. S. J. Russell, "Experimental study of dual-core photonic crystal fibre," Electron. Lett., Vol. 36, No. 16, 1358, 2000.
doi:10.1049/el:20000979

12. Kakarantzas, G., B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Directional coupling in a twin core photonic crystal fiber using heat treatment," Quantum Electronics and Laser Science Conference, 7219405, 2001.

13. Lee, B. H., J. B. Eom, J. Kim, D. S. Moon, and U. C. Paek, "Photonic crystal fiber coupler," Opt. Lett., Vol. 27, No. 10, 812-814, 2002.
doi:10.1364/OL.27.000812

14. Zhang, L. and C. Yang, "Polarization splitter based on photonic crystal fibers," Opt. Express,, Vol. 11, No. 9, 1015, 2003.
doi:10.1364/OE.11.001015

15. Zhang, L. and C. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," J. Lightwave Technol., Vol. 22, No. 5, 1367-1373, 2004.
doi:10.1109/JLT.2004.825356

16. Zhang, L., C. Yang, C. Yu, T. Luo, and A. E. Willner, "PCF-based polarization splitters with simplified structures," J. Lightwave Technol., Vol. 23, No. 11, 3558-3565, 2005.
doi:10.1109/JLT.2005.857779

17. Saitoh, K., Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express, Vol. 11, No. 24, 3188-3195, 2003.
doi:10.1364/OE.11.003188

18. Saitoh, K., Y. Sato, and M. Koshiba, "Polarization splitter in three-core photonic crystal fibers," Opt. Express, Vol. 12, No. 17, 3940-3946, 2004.
doi:10.1364/OPEX.12.003940

19. Birks, T. A., J. C. Knight, B. J. Mangan, and P. St. J. Russel, "Seeing things in a hole new light-photonic crystal fibers," Proc. SPIE, 4532, 206-219, 2001.

20. Mao, D., C. Guan, and L. Yuan, "Polarization splitter based on interference effects in all-solid photonic crystal fibers," Appl. Optics, Vol. 49, No. 19, 3748-3752, 2010.
doi:10.1364/AO.49.003748

21. Chen, M., B. Sun, Y. Zhang, and X. Fu, "Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber," Appl. Optics, Vol. 49, No. 16, 3042-3048, 2010.
doi:10.1364/AO.49.003042

22. Zhang, L. and C. Yang, "A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photonic. Tech. L., Vol. 36, No. 7, 1670-1672, 2004.
doi:10.1109/LPT.2004.828850

23. Rosa, L., F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Polarization splitter based on a squarelattice photonic-crystal fiber," Opt. Lett., Vol. 31, No. 4, 441-443, 2006.
doi:10.1364/OL.31.000441

24. Florous, N., K. Saitoh, and M. Koshiba, "A novel approach for designing photonic crystal fiber splitters with polarization independent propagation characteristics," Opt. Express, Vol. 13, No. 19, 7365-7373, 2005.
doi:10.1364/OPEX.13.007365

25. Lu, W., S. Lou, and X. Wang, "Ultrabroadband polarization splitter based on a modified three-core photonic crystal fiber," Appl. Optics, Vol. 52, No. 35, 8494-8500, 2013.
doi:10.1364/AO.52.008494

26. Lu, W., S. Lou, X. Wang, L. Wang, and R. Feng, "Ultrabroadband polarization splitter based on three-core photonic crystal fibers," Appl. Optics, Vol. 52, No. 3, 449-455, 2013.
doi:10.1364/AO.52.000449

27. Jiang, H., E. Wang, J. Zhang, L. Hu, Q. Mao, Q. Li, and K. Xie, "Polarization splitter based on dual-core photonic crystal fiber," Opt. Express, Vol. 22, No. 25, 30461-30466, 2014.
doi:10.1364/OE.22.030461

28. Liu, Q., S. Li, Z. Fan, W. Zhang, J. Zi, and H. Li, "Numerical analysis of high extinction ratio photonic crystal fiber polarization splitter based on ZnTe glass," Opt. Fiber Technol., Vol. 21, 193-197, 2015.
doi:10.1016/j.yofte.2014.11.001

29. Wang, X., S. Li, H. Chen, G.Wang, and Y. Zhao, "Polarization splitter based on dual-core photonic crystal fiber with octagonal lattice," Opt. Quant. Electron., Vol. 48, No. 4, 271, 2016.
doi:10.1007/s11082-016-0545-7

30. Wang, H., X. Yan, S. Li, G. An, and X. Zhang, "Ultra-short polarization beam splitter based on dual core photonic crystal fiber," J. Mod. Optic., Online, 2016.

31. Kim, S. E., B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. Kee, "Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion," Opt. Express, Vol. 20, No. 2, 1385-1391, 2012.
doi:10.1364/OE.20.001385

32. Li, J., K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, "Design of a single-polarization single-mode photonic crystal fiber double-core coupler," Optik, Vol. 120, 490-496, 2009.
doi:10.1016/j.ijleo.2007.12.002

33. Zhang, S., W. Zhang, P. Geng, X. Li, and J. Ruan, "Design of single-polarization wavelength splitter based on photonic crystal fiber," Appl. Optics, Vol. 50, No. 36, 490-496, 2011.
doi:10.1364/AO.50.006576

34. Saitoh, K. and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol., Vol. 23, No. 11, 3580-3590, 2005.
doi:10.1109/JLT.2005.855855

35. Rahman, B. M. A., A. K. M. Saiful Kabir, M. Rajarajan, and K. T. V. Grattan, "Finite element modal solutions of planar photonic crystal fibers with rectangular air-holes," Opt. Quant. Electron., Vol. 37, 171-183, 2005.
doi:10.1007/s11082-005-1134-3

36. Laegsgaard, J., O. Bang, and A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett., Vol. 29, No. 12, 2473-2475, 2004.
doi:10.1364/OL.29.002473


© Copyright 2010 EMW Publishing. All Rights Reserved