PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 139-145

WIDEBAND FINITE-DIFFERENCE TIME-DOMAIN MODELING OF GRAPHENE VIA RECURSIVE FAST FOURIER TRANSFORM

By F. Afshar, A. Akbarzadeh-Sharbaf, D. D. Giannacopoulos, and S. McFee

Full Article PDF (326 KB)

Abstract:
An efficient method based on the recursive fast Fourier transform (FFT) to incorporate both the intra-band and inter-band conductivity terms of graphene into the finite-difference time-domain (FDTD) method is proposed. As it only requires numerical values of the conductivity, it not only does not enforce any restrictions on the conductivity models, but also can directly take into account material properties obtained from measurement. It reduces the total computational cost from O(N2) to O(Nlog2N) where N is the length of the unknown. The FDTD method is also modified and proven to retain the stability condition of the standard FDTD method.

Citation:
F. Afshar, A. Akbarzadeh-Sharbaf, D. D. Giannacopoulos, and S. McFee, "Wideband Finite-Difference Time-Domain Modeling of Graphene via Recursive Fast Fourier Transform," Progress In Electromagnetics Research C, Vol. 75, 139-145, 2017.
doi:10.2528/PIERC17012505

References:
1. Novoselov, K. S., V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, Vol. 490, No. 7419, 192-200, Oct. 2012.
doi:10.1038/nature11458

2. Afshar, F., A. Akbarzadeh-Sharbaf, and D. Giannacopoulos, "A provably stable and simple FDTD formulation for electromagnetic modeling of graphene sheets," IEEE Trans. Magn., Vol. 52, No. 3, 379-382, Mar. 2016.
doi:10.1109/TMAG.2015.2487835

3. Nayyeri, V., M. Soleimani, and O. M. Ramahi, "Modeling graphene in the finite-difference timedomain method using a surface boundary condition," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4176-4182, Aug. 2013.
doi:10.1109/TAP.2013.2260517

4. Mock, A., "Pade approximant spectral fit for FDTD simulation of graphene in the near infrared," Opt. Mater. Exp., Vol. 2, No. 6, 771-781, 2012.
doi:10.1364/OME.2.000771

5. Lin, H., M. F. Pantoja, L. D. Angulo, J. Alvarez, R. G. Martin, and S. G. Garcia, "FDTD modeling of graphene devices using complex conjugate dispersion material model," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 12, 612-614, Dec. 2012.
doi:10.1109/LMWC.2012.2227466

6. Nayyeri, V., M. Soleimani, and O. M. Ramahi, "Wideband modeling of graphene using the finitedifference time-domain method," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6107-6114, Dec. 2013.
doi:10.1109/TAP.2013.2282535

7. Bouzianas, G. D., N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, "Optimal modeling of infinite graphene sheets via class of generalized FDTD schemes," IEEE Trans. Magn., Vol. 48, No. 2, 379-382, Feb. 2012.
doi:10.1109/TMAG.2011.2172778

8. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys., Condens. Matter, Vol. 19, No. 2, 026222, Jan. 2007.
doi:10.1088/0953-8984/19/2/026222

9. Stankovich, S., et al., "Graphene-based composite materials," Nature, Vol. 442, No. 7100, 282-286, Jul. 2006.
doi:10.1038/nature04969

10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd Ed., Artech House, Boston, MA, USA, 2005.

11. Li, X. and J.-M. Jin, "Time domain finite element modeling of electrically and magnetically dispersive medium via recursive FFT," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1837-1841, 2008.
doi:10.1002/mop.23488

12. Chiang, I-T. and W. C. Chew, "Fast real-time convolution algorithm for microwave multiport networks with nonlinear terminations," IEEE Trans. Circuits Syst-II: Express Briefs, Vol. 52, No. 7, 370-375, Jul. 2005.
doi:10.1109/TCSII.2005.850410

13. Jiao, D. and J.-M. Jin, "A general approach for the stability analysis of the time-domain finiteelement method for electromagnetic simulations," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1624-1632, Nov. 2002.
doi:10.1109/TAP.2002.803965

14. Wang, B., X. Zhang, X. Yuan, and J. Teng, "Optical coupling of surface plasmons between graphene sheets," Appl. Phys. Lett., Vol. 100, No. 13, 131111, 2012.
doi:10.1063/1.3698133


© Copyright 2010 EMW Publishing. All Rights Reserved