Vol. 75
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-05
Wideband Finite-Difference Time-Domain Modeling of Graphene via Recursive Fast Fourier Transform
By
Progress In Electromagnetics Research C, Vol. 75, 139-145, 2017
Abstract
An efficient method based on the recursive fast Fourier transform (FFT) to incorporate both the intra-band and inter-band conductivity terms of graphene into the finite-difference time-domain (FDTD) method is proposed. As it only requires numerical values of the conductivity, it not only does not enforce any restrictions on the conductivity models, but also can directly take into account material properties obtained from measurement. It reduces the total computational cost from O(N2) to O(Nlog2N) where N is the length of the unknown. The FDTD method is also modified and proven to retain the stability condition of the standard FDTD method.
Citation
Fatemeh Afshar, Ali Akbarzadeh-Sharbaf, Dennis D. Giannacopoulos, and Steve McFee, "Wideband Finite-Difference Time-Domain Modeling of Graphene via Recursive Fast Fourier Transform," Progress In Electromagnetics Research C, Vol. 75, 139-145, 2017.
doi:10.2528/PIERC17012505
References

1. Novoselov, K. S., V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, Vol. 490, No. 7419, 192-200, Oct. 2012.
doi:10.1038/nature11458

2. Afshar, F., A. Akbarzadeh-Sharbaf, and D. Giannacopoulos, "A provably stable and simple FDTD formulation for electromagnetic modeling of graphene sheets," IEEE Trans. Magn., Vol. 52, No. 3, 379-382, Mar. 2016.
doi:10.1109/TMAG.2015.2487835

3. Nayyeri, V., M. Soleimani, and O. M. Ramahi, "Modeling graphene in the finite-difference timedomain method using a surface boundary condition," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4176-4182, Aug. 2013.
doi:10.1109/TAP.2013.2260517

4. Mock, A., "Pade approximant spectral fit for FDTD simulation of graphene in the near infrared," Opt. Mater. Exp., Vol. 2, No. 6, 771-781, 2012.
doi:10.1364/OME.2.000771

5. Lin, H., M. F. Pantoja, L. D. Angulo, J. Alvarez, R. G. Martin, and S. G. Garcia, "FDTD modeling of graphene devices using complex conjugate dispersion material model," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 12, 612-614, Dec. 2012.
doi:10.1109/LMWC.2012.2227466

6. Nayyeri, V., M. Soleimani, and O. M. Ramahi, "Wideband modeling of graphene using the finitedifference time-domain method," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6107-6114, Dec. 2013.
doi:10.1109/TAP.2013.2282535

7. Bouzianas, G. D., N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, "Optimal modeling of infinite graphene sheets via class of generalized FDTD schemes," IEEE Trans. Magn., Vol. 48, No. 2, 379-382, Feb. 2012.
doi:10.1109/TMAG.2011.2172778

8. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys., Condens. Matter, Vol. 19, No. 2, 026222, Jan. 2007.
doi:10.1088/0953-8984/19/2/026222

9. Stankovich, S., et al. "Graphene-based composite materials," Nature, Vol. 442, No. 7100, 282-286, Jul. 2006.
doi:10.1038/nature04969

10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd Ed., Artech House, Boston, MA, USA, 2005.

11. Li, X. and J.-M. Jin, "Time domain finite element modeling of electrically and magnetically dispersive medium via recursive FFT," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1837-1841, 2008.
doi:10.1002/mop.23488

12. Chiang, I-T. and W. C. Chew, "Fast real-time convolution algorithm for microwave multiport networks with nonlinear terminations," IEEE Trans. Circuits Syst-II: Express Briefs, Vol. 52, No. 7, 370-375, Jul. 2005.
doi:10.1109/TCSII.2005.850410

13. Jiao, D. and J.-M. Jin, "A general approach for the stability analysis of the time-domain finiteelement method for electromagnetic simulations," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1624-1632, Nov. 2002.
doi:10.1109/TAP.2002.803965

14. Wang, B., X. Zhang, X. Yuan, and J. Teng, "Optical coupling of surface plasmons between graphene sheets," Appl. Phys. Lett., Vol. 100, No. 13, 131111, 2012.
doi:10.1063/1.3698133