PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 63-71

BANDWIDTH-ENHANCED DOUBLE-SLOT TSA WITH Y-SHAPED CORRUGATED EDGES

By Y. Liu, J.-G. Liang, and Y.-W. Wang

Full Article PDF (3,178 KB)

Abstract:
In this paper, a novel bandwidth-enhanced ultra-wideband (UWB) tapered slot antenna, with Y-shaped corrugated edges, is proposed. In the double-slot structure, the two slots are separated by a V-shaped metal surface with straight edges, which is beneficial for improving the directivity of the antenna. Meanwhile, an exponential Y-shaped corrugated edge is designed. This novel corrugated edge not only can improve the impedance bandwidth of the antenna by extending the path of the current, but also can enhance the directivity by concentrating the energy near the tapered slot. The proposed antenna provides 167% fractional bandwidth from 2.5 GHz to 28 GHz. The gain of the antenna is more than 10 dB from 3.5 GHz to 25 GHz and more than 8 dB in the whole operating band.

Citation:
Y. Liu, J.-G. Liang, and Y.-W. Wang, "Bandwidth-Enhanced Double-Slot TSA with Y-Shaped Corrugated Edges," Progress In Electromagnetics Research C, Vol. 74, 63-71, 2017.
doi:10.2528/PIERC17030108

References:
1. Abedian, M., S. K. A. Rahim, S. Danesh, S. Hakimi, and L. Y. Cheong, "Novel design of compact UWB dielectric resonator antenna with dual-band-rejection characteristics for WiMAX/WLAN bands," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 245-248, 2015.
doi:10.1109/LAWP.2014.2360828

2. Pandey, G. K. and M. K. Meshram, "A printed high gain UWB Vivaldi antenna design using tapered corrugation and grating elements," International Journal of RF and Microwave Computer-Aided ngineering, Vol. 25, No. 7, 610-618, 2015.
doi:10.1002/mmce.20899

3. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
doi:10.2528/PIER09080204

4. Hines, J. N., V. H. Rumsey, and C. H. Walter, "Traveling-wave slot antennas," Proc. I.R.E, Vol. 41, 1624-2631, 1953.
doi:10.1109/JRPROC.1953.274190

5. Zhang, F., et al., "A novel compact double exponentially tapered slot antenna (DETSA) for GPR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 195-198, 2011.
doi:10.1109/LAWP.2011.2123868

6. Gorai, A., A. Karmakar, M. Pal, and R. Ghatak, "A super wideband Chebyshev tapered antipodal Vivaldi antenna," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 9, 1328-1333, 2015.
doi:10.1016/j.aeue.2015.05.017

7. Khalichi, B., S. Nikmehr, and A. Pourziad, "Development of novel wideband H-plane horn antennas by employing asymmetrical slots based on SIW technology," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 9, 1374-1380, 2015.
doi:10.1016/j.aeue.2015.06.004

8. Oraizi, H. and S. Jam, "Optimum design of tapered slot antenna profile," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1987-1995, Aug. 2003.
doi:10.1109/TAP.2003.811090

9. Oktafiani, F., Y. S. Amrullah, Y. P. Saputera, Y. Wahyu, and Y. N. Wijayanto, "Analysis of corrugated edge variations on balanced antipodal Vivaldi antennas," 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), 1-5, 2015.

10. Madannezhad, A., H. Ameri, S. Sadeghi, and R. Faraji-Dana, "A miniaturized Vivaldi antenna with modified feeding structure for UWB applications," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-3, 2016.

11. Nakajima, H., T. Kosugi, and T. Enoki, "Hyperbolic tangent tapered slot antenna," IET Electronics Letters, Vol. 46, No. 21, 31-32, 2010.
doi:10.1049/el.2010.2383

12. Walter, E., L. Ortiz-Balbuena, A. Ghadiri, and K. Moez, "A 324-element Vivaldi antenna array for radio astronomy instrumentation," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 241-249, 2012.

13. Lim, T. G., H. N. Ang, I. D. Robertson, and B. L. Weiss, "Integrated millimeter-wave tapered slot antenna using conductor strip gratings," IET Microw. Antennas Propag., Vol. 4, No. 9, 1216-1223, 2010.
doi:10.1049/iet-map.2008.0121

14. Ellis, T. J. and G. M. Rebeiz, "MM-wave tapered slot antennas on micromachined photonic band gap dielectrics," IEEE MTT-S Int. Microwave Symp. Dig., 1157-1160, San Francisco, CA, 1996.

15. Wang, Y.-W., G.-M. Wang, and B.-F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 18, 1380-1383, 2013.
doi:10.1109/LAWP.2013.2285182

16. Kumar, P., Z. Akhter, A. Kr. Jha, and M. Jaleel Akhtar, "Directivity enhancement of double slot Vivaldi antenna using anisotropic zero-index metamaterials," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2333-2334, 2015.

17. Shuppert, B., "Microstrip/Slotline transitions: Modeling and experimental investigation," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1272-1282, 1988.
doi:10.1109/22.3669


© Copyright 2010 EMW Publishing. All Rights Reserved