PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 23-30

TEMPLATE SYNTHESIS AND MAGNETIC CHARACTERIZATION OF FENI NANOTUBES

By A. E. Shumskaya, E. Y. Kaniukov, A. L. Kozlovskiy, D. I. Shlimas, M. V. Zdorovets, M. A. Ibragimova, V. S. Rusakov, and K. K. Kadyrzhanov

Full Article PDF (450 KB)

Abstract:
Iron-nickel nanotubes consisting of 20% of Ni and 80% of Fe with an aspect ratio of about 100 were synthesized by electrochemical deposition in the pores of the polyethylene terephthalate ion-track membranes. The main morphological parameters such as composition, wall thickness and structural characteristics were defined. Macro- and micromagnetic parameters of FeNi nanotubes were determined.

Citation:
A. E. Shumskaya, E. Y. Kaniukov, A. L. Kozlovskiy, D. I. Shlimas, M. V. Zdorovets, M. A. Ibragimova, V. S. Rusakov, and K. K. Kadyrzhanov, "Template Synthesis and Magnetic Characterization of FeNi Nanotubes," Progress In Electromagnetics Research C, Vol. 75, 23-30, 2017.
doi:10.2528/PIERC17030606

References:
1. Sander, M. S., M. J. Cote, W. Gu, B. M. Kile, and C. P. Tripp, "Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates," Adv. Mater., Vol. 16, No. 22, 2052-2057, Nov. 2004.
doi:10.1002/adma.200400446

2. Graham, L. M., S. Cho, S. K. Kim, M. Noked, and S. B. Lee, "Role of boric acid in nickel nanotube electrodeposition: A surface-directed growth mechanism," Chem. Commun., Vol. 50, No. 5, 527-529, 2014.
doi:10.1039/C3CC47183G

3. Alnassar, M., A. Alfadhel, Y. P. Ivanov, and J. Kosel, "Magnetoelectric polymer nanocomposite for flexible electronics," J. Appl. Phys., Vol. 117, No. 17, 17D711, 2015.
doi:10.1063/1.4913943

4. Yen, S. K., P. Padmanabhan, and S. T. Selvan, "Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery," Theranostics, Vol. 3, No. 12, 986-1003, 2013.
doi:10.7150/thno.4827

5. Salem, A. K., P. C. Searson, and K. W. Leong, "Multifunctional nanorods for gene delivery," Nat. Mater., Vol. 2, No. 10, 668-671, 2003.
doi:10.1038/nmat974

6. Rawtani, D., T. Sajan, A. T. R, and Y. K. Agrawal, "Emerging strategies for synthesis and manipulation of nanowires: A Review," Rev. Adv. Mater. Sci., Vol. 40, No. 2, 177-187, 2015.

7. Guo, P., C. R. Martin, Y. Zhao, J. Ge, and R. N. Zare, "General method for producing organic nanoparticles using nanoporous membranes," Nano Lett., Vol. 10, 2202-2206, 2010.
doi:10.1021/nl101057d

8. Martin, C. R., "Nanomaterials: A membrane-based synthetic approach," Science, Vol. 266, No. 5193, 1961-1966, 1994.
doi:10.1126/science.266.5193.1961

9. Hulteen, J. C. and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem., Vol. 7, No. 7, 1075-1087, 1997.
doi:10.1039/a700027h

10. Schonenberger, C., "Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology," J. Phys. Chem. B, Vol. 5647, No. 96, 5497-5505, 1997.
doi:10.1021/jp963938g

11. Ohgai, T., X. Hoffer, A. Fabian, L. Gravier, and J.-P. Ansermet, "Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium," Journal of Materials Chemistry, Vol. 13, No. 10, 2530, 2003.
doi:10.1039/B306581B

12. Shao, P., G. Ji, and P. Chen, "Gold nanotube membranes: Preparation, characterization and application for enantioseparation," J. Memb. Sci., Vol. 255, No. 1-2, 1-11, Jun. 2005.
doi:10.1016/j.memsci.2005.01.018

13. Xu, D., Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, "Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates," Chem. Phys. Lett., Vol. 325, No. 4, 340-344, Jul. 2000.
doi:10.1016/S0009-2614(00)00676-X

14. Katwal, G., M. Paulose, I. A. Rusakova, J. E. Martinez, and O. K. Varghese, "Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection," Nano Lett., Vol. 16, No. 5, 3014-3021, May 2016.
doi:10.1021/acs.nanolett.5b05280

15. Wang, X. W., Z. H. Yuan, and B. C. Fang, "Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters," Mater. Chem. Phys., Vol. 125, No. 1–2, 1-4, 2011.
doi:10.1016/j.matchemphys.2010.08.083

16. Toimil-Molares, M. E., "Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology," Beilstein J. Nanotechnol., Vol. 3, No. 1, 860-883, Dec. 2012.
doi:10.3762/bjnano.3.97

17. Vivas, L. G., Y. P. Ivanov, D. G. Trabada, M. P. Proenca, O. Chubykalo-Fesenko, and M. Vazquez, "Magnetic properties of Co nanopillar arrays prepared from alumina templates,", Vol. 24, No. 10, 105703, 2013.
doi:10.1088/0957-4484/24/10/105703

18. Dallanora, A., T. L. Marcondes, G. G. Bermudez, P. F. P. Fichtner, C. Trautmann, M. Toulemonde, and R. M. Papaleo, "Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability," J. Appl. Phys., Vol. 104, No. 2, 24307–1-24307–8, 2008.
doi:10.1063/1.2957052

19. Fink, D., Fundamentals of Ion-Irradiated Polymers: Fundamentals and Applications. V. 1, Springer, Berlin-Heidelberg, 2004.
doi:10.1007/978-3-662-07326-1

20. Shen, C., X. Wang, W. Zhang, and F. Kang, "Direct prototyping of patterned nanoporous carbon: A route from materials to on-chip devices," Sci. Rep., Vol. 3, 2294, 2013.
doi:10.1038/srep02294

21. Kaniukov, E. Y., J. Ustarroz, D. V Yakimchuk, M. Petrova, H. Terryn, V. Sivakov, and A. V Petrov, "Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology," Nanotechnology, Vol. 27, No. 11, 115305, Mar. 2016.
doi:10.1088/0957-4484/27/11/115305

22. Fink, D., A. V. Petrov, K. Hoppe, W. R. Fahrner, R. M. Papaleo, A. S. Berdinsky, A. Chandra, A. Chemseddine, A. Zrineh, A. Biswas, F. Faupel, and L. T. Chadderton, "Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures," Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, Vol. 218, No. 1-4, 355-361, 2004.
doi:10.1016/j.nimb.2003.12.083

23. Haehnel, V., S. Fahler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, and H. Schlorb, "Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes," Acta Mater., Vol. 58, No. 7, 2330-2337, 2010.
doi:10.1016/j.actamat.2009.12.019

24. Martın, J. I., M. Velez, R. Morales, J. M. Alameda, J. V. Anguita, F. Briones, and J. L. Vicent, "Fabrication and magnetic properties of arrays of amorphous and polycrystalline ferromagnetic nanowires obtained by electron beam lithography," J. Magn. Magn. Mater., Vol. 249, No. 1–2, 156-162, Aug. 2002.
doi:10.1016/S0304-8853(02)00524-3

25. Barth, S., S. Estrade, F. Hernandez-Ramirez, F. Peiro, J. Arbiol, A. Romano-Rodriguez, J. R. Morante, and S. Mathur, "Studies on surface facets and chemical composition of vapor grown one-dimensional magnetite nanostructures," Cryst. Growth Des., Vol. 9, No. 2, 1077-1081, Feb. 2009.
doi:10.1021/cg8009095

26. Morber, J. R., Y. Ding, M. S. Haluska, Y. Li, J. P. Liu, Z. L.Wang, and R. L. Snyder, "PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties," J. Phys. Chem. B, Vol. 110, No. 43, 21672-21679, 2006.
doi:10.1021/jp064484i

27. Liu, Z., Q. Zhang, G. Shi, Y. Li, and H. Wang, "Solvothermal synthesis and magneto-optical properties of Zn1-xNixO hierarchical microspheres," J. Magn. Magn. Mater., Vol. 323, No. 7, 1022-1026, Apr. 2011.
doi:10.1016/j.jmmm.2010.12.011

28. Hua, Z., S. Yang, H. Huang, L. Lv, M. Lu, B. Gu, and Y. Du, "Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure," Nanotechnology, Vol. 17, No. 20, 5106-5110, 2006.
doi:10.1088/0957-4484/17/20/011

29. Zhou, D., T. Wang, M. G. Zhu, Z. H. Guo, W. Li, and F. S. Li, "Magnetic interaction in FeCo alloy nanotube array," J. Magn., Vol. 16, No. 4, 413-416, 2011.
doi:10.4283/JMAG.2011.16.4.413

30. Yoo, B., F. Xiao, K. N. Bozhilov, J. Herman, M. A. Ryan, and N. V. Myung, "Electrodeposition of thermoelectric superlattice nanowires," Adv. Mater., Vol. 19, No. 2, 296-299, 2007.
doi:10.1002/adma.200600606

31. Motoyama, M., Y. Fukunaka, T. Sakka, and Y. H. Ogata, "Initial stages of electrodeposition of metal nanowires in nanoporous templates," Electrochim. Acta, Vol. 53, No. 1, 205-212, Nov. 2007.
doi:10.1016/j.electacta.2007.04.122

32. Narayanan, T. N., M. M. Shaijumon, L. Ci, P. M. Ajayan, and M. R. Anantharaman, "On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties," Nano Res., Vol. 1, No. 6, 465-473, Dec. 2008.
doi:10.1007/s12274-008-8049-9

33. Proenca, M. P., C. T. Sousa, J. Ventura, M. Vazquez, and J. P. Araujo, "Distinguishing nanowire and nanotube formation by the deposition current transients," Nanoscale Res. Lett., Vol. 7, No. 1, 280, 2012.
doi:10.1186/1556-276X-7-280

34. Han, X.-F., S. Shamaila, R. Sharif, J.-Y. Chen, H.-R. Liu, and D.-P. Liu, "Structural and magnetic properties of various ferromagnetic nanotubes," Adv. Mater., Vol. 21, No. 45, 4619-4624, Dec. 2009.
doi:10.1002/adma.200901065

35. Narayanan, T. N., M. M. Shaijumon, P. M. Ajayan, and M. R. Anantharaman, "Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth," J. Phys. Chem. C, Vol. 112, No. 37, 14281-14285, Sep. 2008.
doi:10.1021/jp8035007

36. Guillen, C. and J. Herrero, "Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates," Thin Solid Films, Vol. 480–481, 129-132, Jun. 2005.
doi:10.1016/j.tsf.2004.11.040

37. Faraj, M. G. and K. Ibrahim, "Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates," Int. J. Polym. Sci., Vol. 2011, 1-4, 2011.
doi:10.1155/2011/302843

38. Langford, J. I. and A. J. C. Wilson, "Scherrer after sixty years: A survey and some new results in the determination of crystallite size," J. Appl. Crystallogr., Vol. 11, No. 2, 102-113, Apr. 1978.
doi:10.1107/S0021889878012844

39. Han, G. C., B. Y. Zong, P. Luo, and Y. H. Wu, "Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays," J. Appl. Phys., Vol. 93, No. 11, 9202-9207, 2003.
doi:10.1063/1.1572197


© Copyright 2010 EMW Publishing. All Rights Reserved