Vol. 75

Latest Volume
All Volumes
All Issues

Template Synthesis and Magnetic Characterization of FeNi Nanotubes

By Alena Euhenauna Shumskaya, Egor Yur'evich Kaniukov, Artem Leonidovich Kozlovskiy, Dmitriy Igorevich Shlimas, Maxim Vladimirovich Zdorovets, Milana Abasovna Ibragimova, Viacheslav Rusakov, and Kayrat Kamalovich Kadyrzhanov
Progress In Electromagnetics Research C, Vol. 75, 23-30, 2017


Iron-nickel nanotubes consisting of 20% of Ni and 80% of Fe with an aspect ratio of about 100 were synthesized by electrochemical deposition in the pores of the polyethylene terephthalate ion-track membranes. The main morphological parameters such as composition, wall thickness and structural characteristics were defined. Macro- and micromagnetic parameters of FeNi nanotubes were determined.


Alena Euhenauna Shumskaya, Egor Yur'evich Kaniukov, Artem Leonidovich Kozlovskiy, Dmitriy Igorevich Shlimas, Maxim Vladimirovich Zdorovets, Milana Abasovna Ibragimova, Viacheslav Rusakov, and Kayrat Kamalovich Kadyrzhanov, "Template Synthesis and Magnetic Characterization of FeNi Nanotubes," Progress In Electromagnetics Research C, Vol. 75, 23-30, 2017.


    1. Sander, M. S., M. J. Cote, W. Gu, B. M. Kile, and C. P. Tripp, "Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates," Adv. Mater., Vol. 16, No. 22, 2052-2057, Nov. 2004.

    2. Graham, L. M., S. Cho, S. K. Kim, M. Noked, and S. B. Lee, "Role of boric acid in nickel nanotube electrodeposition: A surface-directed growth mechanism," Chem. Commun., Vol. 50, No. 5, 527-529, 2014.

    3. Alnassar, M., A. Alfadhel, Y. P. Ivanov, and J. Kosel, "Magnetoelectric polymer nanocomposite for flexible electronics," J. Appl. Phys., Vol. 117, No. 17, 17D711, 2015.

    4. Yen, S. K., P. Padmanabhan, and S. T. Selvan, "Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery," Theranostics, Vol. 3, No. 12, 986-1003, 2013.

    5. Salem, A. K., P. C. Searson, and K. W. Leong, "Multifunctional nanorods for gene delivery," Nat. Mater., Vol. 2, No. 10, 668-671, 2003.

    6. Rawtani, D., T. Sajan, A. T. R, and Y. K. Agrawal, "Emerging strategies for synthesis and manipulation of nanowires: A Review," Rev. Adv. Mater. Sci., Vol. 40, No. 2, 177-187, 2015.

    7. Guo, P., C. R. Martin, Y. Zhao, J. Ge, and R. N. Zare, "General method for producing organic nanoparticles using nanoporous membranes," Nano Lett., Vol. 10, 2202-2206, 2010.

    8. Martin, C. R., "Nanomaterials: A membrane-based synthetic approach," Science, Vol. 266, No. 5193, 1961-1966, 1994.

    9. Hulteen, J. C. and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem., Vol. 7, No. 7, 1075-1087, 1997.

    10. Schonenberger, C., "Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology," J. Phys. Chem. B, Vol. 5647, No. 96, 5497-5505, 1997.

    11. Ohgai, T., X. Hoffer, A. Fabian, L. Gravier, and J.-P. Ansermet, "Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium," Journal of Materials Chemistry, Vol. 13, No. 10, 2530, 2003.

    12. Shao, P., G. Ji, and P. Chen, "Gold nanotube membranes: Preparation, characterization and application for enantioseparation," J. Memb. Sci., Vol. 255, No. 1-2, 1-11, Jun. 2005.

    13. Xu, D., Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, "Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates," Chem. Phys. Lett., Vol. 325, No. 4, 340-344, Jul. 2000.

    14. Katwal, G., M. Paulose, I. A. Rusakova, J. E. Martinez, and O. K. Varghese, "Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection," Nano Lett., Vol. 16, No. 5, 3014-3021, May 2016.

    15. Wang, X. W., Z. H. Yuan, and B. C. Fang, "Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters," Mater. Chem. Phys., Vol. 125, No. 1–2, 1-4, 2011.

    16. Toimil-Molares, M. E., "Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology," Beilstein J. Nanotechnol., Vol. 3, No. 1, 860-883, Dec. 2012.

    17. Vivas, L. G., Y. P. Ivanov, D. G. Trabada, M. P. Proenca, O. Chubykalo-Fesenko, and M. Vazquez, "Magnetic properties of Co nanopillar arrays prepared from alumina templates,", Vol. 24, No. 10, 105703, 2013.

    18. Dallanora, A., T. L. Marcondes, G. G. Bermudez, P. F. P. Fichtner, C. Trautmann, M. Toulemonde, and R. M. Papaleo, "Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability," J. Appl. Phys., Vol. 104, No. 2, 24307–1-24307–8, 2008.

    19. Fink, D., Fundamentals of Ion-Irradiated Polymers: Fundamentals and Applications. V. 1, Springer, Berlin-Heidelberg, 2004.

    20. Shen, C., X. Wang, W. Zhang, and F. Kang, "Direct prototyping of patterned nanoporous carbon: A route from materials to on-chip devices," Sci. Rep., Vol. 3, 2294, 2013.

    21. Kaniukov, E. Y., J. Ustarroz, D. V Yakimchuk, M. Petrova, H. Terryn, V. Sivakov, and A. V Petrov, "Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology," Nanotechnology, Vol. 27, No. 11, 115305, Mar. 2016.

    22. Fink, D., A. V. Petrov, K. Hoppe, W. R. Fahrner, R. M. Papaleo, A. S. Berdinsky, A. Chandra, A. Chemseddine, A. Zrineh, A. Biswas, F. Faupel, and L. T. Chadderton, "Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures," Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, Vol. 218, No. 1-4, 355-361, 2004.

    23. Haehnel, V., S. Fahler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, and H. Schlorb, "Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes," Acta Mater., Vol. 58, No. 7, 2330-2337, 2010.

    24. Martın, J. I., M. Velez, R. Morales, J. M. Alameda, J. V. Anguita, F. Briones, and J. L. Vicent, "Fabrication and magnetic properties of arrays of amorphous and polycrystalline ferromagnetic nanowires obtained by electron beam lithography," J. Magn. Magn. Mater., Vol. 249, No. 1–2, 156-162, Aug. 2002.

    25. Barth, S., S. Estrade, F. Hernandez-Ramirez, F. Peiro, J. Arbiol, A. Romano-Rodriguez, J. R. Morante, and S. Mathur, "Studies on surface facets and chemical composition of vapor grown one-dimensional magnetite nanostructures," Cryst. Growth Des., Vol. 9, No. 2, 1077-1081, Feb. 2009.

    26. Morber, J. R., Y. Ding, M. S. Haluska, Y. Li, J. P. Liu, Z. L.Wang, and R. L. Snyder, "PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties," J. Phys. Chem. B, Vol. 110, No. 43, 21672-21679, 2006.

    27. Liu, Z., Q. Zhang, G. Shi, Y. Li, and H. Wang, "Solvothermal synthesis and magneto-optical properties of Zn1-xNixO hierarchical microspheres," J. Magn. Magn. Mater., Vol. 323, No. 7, 1022-1026, Apr. 2011.

    28. Hua, Z., S. Yang, H. Huang, L. Lv, M. Lu, B. Gu, and Y. Du, "Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure," Nanotechnology, Vol. 17, No. 20, 5106-5110, 2006.

    29. Zhou, D., T. Wang, M. G. Zhu, Z. H. Guo, W. Li, and F. S. Li, "Magnetic interaction in FeCo alloy nanotube array," J. Magn., Vol. 16, No. 4, 413-416, 2011.

    30. Yoo, B., F. Xiao, K. N. Bozhilov, J. Herman, M. A. Ryan, and N. V. Myung, "Electrodeposition of thermoelectric superlattice nanowires," Adv. Mater., Vol. 19, No. 2, 296-299, 2007.

    31. Motoyama, M., Y. Fukunaka, T. Sakka, and Y. H. Ogata, "Initial stages of electrodeposition of metal nanowires in nanoporous templates," Electrochim. Acta, Vol. 53, No. 1, 205-212, Nov. 2007.

    32. Narayanan, T. N., M. M. Shaijumon, L. Ci, P. M. Ajayan, and M. R. Anantharaman, "On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties," Nano Res., Vol. 1, No. 6, 465-473, Dec. 2008.

    33. Proenca, M. P., C. T. Sousa, J. Ventura, M. Vazquez, and J. P. Araujo, "Distinguishing nanowire and nanotube formation by the deposition current transients," Nanoscale Res. Lett., Vol. 7, No. 1, 280, 2012.

    34. Han, X.-F., S. Shamaila, R. Sharif, J.-Y. Chen, H.-R. Liu, and D.-P. Liu, "Structural and magnetic properties of various ferromagnetic nanotubes," Adv. Mater., Vol. 21, No. 45, 4619-4624, Dec. 2009.

    35. Narayanan, T. N., M. M. Shaijumon, P. M. Ajayan, and M. R. Anantharaman, "Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth," J. Phys. Chem. C, Vol. 112, No. 37, 14281-14285, Sep. 2008.

    36. Guillen, C. and J. Herrero, "Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates," Thin Solid Films, Vol. 480–481, 129-132, Jun. 2005.

    37. Faraj, M. G. and K. Ibrahim, "Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates," Int. J. Polym. Sci., Vol. 2011, 1-4, 2011.

    38. Langford, J. I. and A. J. C. Wilson, "Scherrer after sixty years: A survey and some new results in the determination of crystallite size," J. Appl. Crystallogr., Vol. 11, No. 2, 102-113, Apr. 1978.

    39. Han, G. C., B. Y. Zong, P. Luo, and Y. H. Wu, "Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays," J. Appl. Phys., Vol. 93, No. 11, 9202-9207, 2003.