PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 151-160

A WIDEBAND DOHERTY POWER AMPLIFIER WITH SHUNTED REACTIVE LOAD FOR EFFICIENCY ENHANCEMENT

By W. Kong, J. Xia, D.-W. Ding, L.-X. Yang, C. Yu, and Y. Zhan

Full Article PDF (305 KB)

Abstract:
A highly efficient Doherty power amplifier (DPA) using shunted reactive load is designed to achieve wideband operation. For enhanced back-off efficiency over the whole bandwidth, a modified load modulation network (LMN), which employs a shunted reactive load at the combining point, was firstly designed to enlarge the effective load impedance of the carrier amplifier at low and high frequencies. Then, the two-point matching approach was employed to design the carrier and peaking output matching networks, which can eliminate the use of offset lines and simplify the LMN. Measurement results show that the designed DPA can deliver an efficiency of 48%-61% at 6 dB back-off power over the frequency band of 2.2-2.9 GHz. For a 20 MHz LTE modulated signal, an average efficiency of higher than 55% can be achieved at an average output power of 37 dBm, while the adjacent channel leakage ratio is below -49 dBc after linearization.

Citation:
W. Kong, J. Xia, D.-W. Ding, L.-X. Yang, C. Yu, and Y. Zhan, "A Wideband Doherty Power Amplifier with Shunted Reactive Load for Efficiency Enhancement," Progress In Electromagnetics Research C, Vol. 74, 151-160, 2017.
doi:10.2528/PIERC17031703

References:
1. Chen, S. and Q. Xue, "Optimized load modulation network for Doherty power amplifier performance enhancement ," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 11, 3474-3481, Nov. 2012.
doi:10.1109/TMTT.2012.2215625

2. Fan, C. Z., X. W. Zhu, J. Xia, and L. Zhang, "Efficiency enhanced class-F Doherty power amplifier at 3.5 GHz for LTE-advanced application," Asia-Pacific Microwave Conference (APMC), 707-709, Seoul, 2013.

3. Xia, J., X. Zhu, L. Zhang, J. Zhai, and Y. Sun, "High-efficiency GaN Doherty power amplifier for 100 MHz LTE-advanced application based on modified load modulation network," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 8, 2911-2921, Aug. 2013.
doi:10.1109/TMTT.2013.2269052

4. Nghiem, X. A. and R. Negra, "Design of a concurrent quad-band GaN-HEMT Doherty power amplifier for wireless applications," IEEE MTT-S International Microwave Symposium Digest, 1-4, Seattle, WA, USA, Jun. 2013.

5. Ozen, M. and C. Fager, "Symmetrical Doherty amplifier with high efficiency over large output power dynamic range," IEEE MTT-S International Microwave Symposium Digest, 1-3, Tampa, FL, USA, Jun. 2014.

6. Camarchia, V., et al., "A K band GaAs MMIC Doherty power amplifier for point to point microwave backhaul applications," International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMiC’14), 1-3, Leuven, Belgium, Apr. 2014.

7. Xia, J. and X. Zhu, "Doherty power amplifier with enhanced in-band load modulation for 100 MHz LTE-advanced application," Microwave and Optical Technology Letters, Vol. 57, No. 2, 391-395, Feb. 2015.
doi:10.1002/mop.28854

8. Park, Y., J. Lee, S. Jee, S. Kim, and B. Kim, "Optimized Doherty power amplifier with a new offset line," IEEE MTT-S International Microwave Symposium Digest, 1-4, Phoenix, AZ, USA, Jun. 2015.

9. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 934-944, Apr. 2011.
doi:10.1109/TMTT.2010.2098040

10. Kang, D., D. Kim, Y. Cho, B. Park, J. Kim, and B. Kim, "Design of bandwidth-enhanced Doherty power amplifiers for handset applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3474-3483, Dec. 2011.
doi:10.1109/TMTT.2011.2171042

11. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6 GHz wideba GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745

12. Akbarpour, M., M. Helaoui, and F. M. Ghannouchi, "A transformerless load-modulated (TLLM) architecture for efficient wideband power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 9, 2863-2874, Sep. 2012.
doi:10.1109/TMTT.2012.2206050

13. Seo, M., H. Lee, J. Gu, and Y. Yang, "Doherty power amplifier using a compact load network for bandwidth extension," Asia-Pacific Microwave Conference (APMC), 742-744, Seoul, 2013.

14. Piazzon, L., P. Colantonio, R. Giofre, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave Wireless Components Letters, Vol. 23, No. 11, 626-628, Nov. 2013.
doi:10.1109/LMWC.2013.2281413

15. Abadi, M. N. A., H. Golestaneh, H. Sarbishaei, and S. Boumaiza, "An extended bandwidth Doherty power amplifier using a novel output combining," IEEE MTT-S International Microwave Symposium Digest, 1-3, Tampa, FL, USA, Jun. 2014.

16. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth," IEEE Microwave Wireless Components Letters, Vol. 24, No. 11, 775-777, Nov. 2014.
doi:10.1109/LMWC.2014.2345193

17. Watanabe, S., Y. Takayama, R. Ishikawa, and K. Honjo, "A miniature broadband Doherty power amplifier with a series-connected load," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 572-579, Feb. 2015.
doi:10.1109/TMTT.2014.2377725

18. Nghiem, X. A., J. Guan, and R. Negra, "Broadband sequential power amplifier with Doherty-type active load modulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2821-2832, Sep. 2015.
doi:10.1109/TMTT.2015.2456901

19. Fang, X. H. and K. K. M. Cheng, "Improving power utilization factor of broadband Doherty amplifier by using bandpass auxiliary transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2811-2820, Sep. 2015.
doi:10.1109/TMTT.2015.2447544

20. Pang, J., S. He, C. Huang, Z. Dai, J. Peng, and F. You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, Dec. 2015.
doi:10.1109/TMTT.2015.2495201

21. Xia, J., M. Yang, Y. Guo, and A. Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, Jul. 2016.
doi:10.1109/TMTT.2016.2574861

22. Abadi, M. N. A., H. Golestaneh, H. Sarbishaei, and S. Boumaiza, "Doherty power amplifier with extended bandwidth and improved linearizability under carrier-aggregated signal stimuli," IEEE Microwave Wireless Components Letters, Vol. 26, No. 5, 358-360, May 2016.
doi:10.1109/LMWC.2016.2549281


© Copyright 2010 EMW Publishing. All Rights Reserved