PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 1-11

ELECTROMAGNETIC ANALYSIS ON PROPAGATION CHARACTERISTICS OF CRLH WAVEGUIDE LOADED WITH DOUBLE RIDGE CORRUGATIONS

By Q. Yang, X. Zhao, and Y. Zhang

Full Article PDF (1,192 KB)

Abstract:
The propagation characteristics of a composite right/left-handed (CRLH) waveguide loaded with air-filled double ridge corrugations (DRCs) is studied intensively in this paper. It is analyzed from the perspective of electromagnetic (EM) fields other than equivalent circuit method used by many other CRLH structures. First, the EM fields inside the CRLH waveguide are derived theoretically based on the EM fields in the rectangular waveguide and the DRC, as well as the boundary conditions on the interface, respectively. Then the propagation characteristics of the CRLH waveguide including the dispersion relation, surface current and transmitted power are determined according to the EM fields. The properties of the surface current are focused on for analyzing the application possibility of this CRLH waveguide to the leaky-wave antennas (LWAs). The transmitted power of the CRLH waveguide is calculated to demonstrate the high power capacitance of this CRLH waveguide. All the theoretical results are veri ed through full-wave simulations.

Citation:
Q. Yang, X. Zhao, and Y. Zhang, "Electromagnetic Analysis on Propagation Characteristics of CRLH Waveguide Loaded with Double Ridge Corrugations," Progress In Electromagnetics Research C, Vol. 75, 1-11, 2017.
doi:10.2528/PIERC17032202

References:
1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, Wiley-IEEE Press, 2006.

2. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett., Vol. 38, No. 23, 1414-1416, 2002.
doi:10.1049/el:20020977

3. Abdelaziz, A. F., T. M. Abuelfadl, and O. L. Elsayed, "Realization of composite right/left-handed transmission line using coupled lines," Progress In Electromagnetics Research, Vol. 92, 299-315, 2009.
doi:10.2528/PIER09040305

4. Dong, Y. and T. Itho, "Composite right/left-Handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 767-775, 2011.
doi:10.1109/TAP.2010.2103025

5. Dong, Y. and T. Itho, "Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 760-771, 2012.
doi:10.1109/TAP.2011.2173124

6. Yang, Q., Y. Zhang, and X. Zhang, "X-band composite right/left-handed leaky wave antenna with large beam scanning-range/bandwidth ratio," Electron. Lett., Vol. 48, No. 13, 746-747, 2012.
doi:10.1049/el.2012.0780

7. Yang, Q., Y. Zhang, and X. Zhang, "A shunt-capacitance-aided composite right/left-handed leaky wave antenna with large scanning-range/bandwidth ratio," PIERS Proceedings, 649-652, Moscow, Russia, Aug. 19–23, 2012.

8. Yang, T., P.-L. Chi, and R.-M. Xu, "Novel composite right/left-handed leaky-wave antennas based on the folded substrate-integrated-waveguide structures," Progress In Electromagnetics Research C, Vol. 29, 235-248, 2012.
doi:10.2528/PIERC12040215

9. Yang, Q. and Y. Zhang, "Non-radiative composite right/left-handed transmission line based on ridge substrate integrated waveguide," Electron. Lett., Vol. 49, No. 20, 1280-1282, 2013.
doi:10.1049/el.2013.2402

10. Yang, Q., X. Zhao, and Y. Zhang, "Composite right/left-handed ridge substrate integrated waveguide slot array antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2311-2316, 2014.
doi:10.1109/TAP.2014.2302834

11. Eshrah, I. A., A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "Rectangular waveguide with dielectric-filled corrugations supporting backward waves," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3298-3304, 2005.
doi:10.1109/TMTT.2005.855748

12. Chen, Y., S.-W. Liao, J. Wei, and J.-H. Xu, "Unequally spaced and excited resonant slottedwaveguide antenna array based on an improved resonant-slot coupled cavity chain composite right/left-handed waveguide," Progress In Electromagnetics Research, Vol. 110, 421-435, 2010.
doi:10.2528/PIER10101905

13. Eldeen, A. M. N. and I. A. Eshrah, "CRLH waveguide with air-filled double-ridge corrugations," Proc. IEEE Symp. Antennas Propag. Soc. Int. Symp., 2965-2968, Spokane, Washington, USA, 2011.

14. Kim, D. J. and J. H. Lee, "Beam scanning leaky-wave slot antenna using balanced CRLH waveguide operating above the cutoff frequency," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2432-2440, 2013.
doi:10.1109/TAP.2013.2237740

15. Navarro-Tapia, M., J. Esteban, and C. Camacho-Pealosa, "Initial assessment of a waveguide with dielectric-filled corrugations as a technology for slot antennas with backward-to-forward scanning capabilities," Metamaterials, Vol. 3, 174-184, 2009.
doi:10.1016/j.metmat.2009.07.004

16. Navarro-Tapia, M., J. Esteban, and C. Camacho-Pealosa, "On the actual possibilities of applying the composite right/left-handed waveguide technology to slot array antennas," EEE Trans. Antennas Propag., Vol. 60, No. 5, 2183-2193, 2012.
doi:10.1109/TAP.2012.2189738

17. Kord, A. M. and I. A. Eshrah, "Generalised asymptotic boundary conditions and their application to composite right/left-handed rectangular waveguide with double-ridge corrugations," IET Microw. Antennas Propag., Vol. 8, No. 13, 1014-1020, 2014.
doi:10.1049/iet-map.2013.0326

18. Getsinger, W. J., "Ridge waveguide field description and application to directional couplers," IRE Trans. Microw. Theory Tech., Vol. 10, 41-50, 1962.
doi:10.1109/TMTT.1962.1125444

19. Yang, Q., X. Zhao, and Y. Zhang, "CRLH waveguide based Ka-band beam-steering leaky-wave antenna for radar application," PIERS Proceedings, 2820-2823, Prague, Jul. 6–9, 2015.

20. Yang, Q., X. Zhao, and Y. Zhang, "Leaky-wave radiation analysis for CRLH waveguide with long slot on its broadwall," 2016 10th European Conference Antennas Propag. (EuCAP2016), Davos, Switzerland, 2016.


© Copyright 2010 EMW Publishing. All Rights Reserved