PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 53-61

TUNABLE PLASMONIC INDUCED TRANSPARENCY IN GRAPHENE NANORIBBON RESONATORS

By H. Zhuang, H. Xu, S. Gong, and Y. Wang

Full Article PDF (1,484 KB)

Abstract:
A plasmonic induced transparency (PIT) structure is proposed and numerically investigated using the finite difference time domain (FDTD) method, which is achieved by the destructive interference between two graphene nano ribbon resonators and the bus waveguide. The common three-level atom system is used to explore the physical origin of the PIT behavior. The simulation results show that the PIT at different modes can be excited or suppressed by choosing the proper coupling position of the resonators. The peak and bandwidth of the transparent window are controlled by the coupling distance between the resonators and the bus waveguide, and the transparent window can be freely tuned by adjusting the chemical potential of graphene. The tunable PIT effect may offer a new avenue for novel integrated optical switching and slow-light devices in THz and mid-infrared frequencies.

Citation:
H. Zhuang, H. Xu, S. Gong, and Y. Wang, "Tunable Plasmonic Induced Transparency in Graphene Nanoribbon Resonators," Progress In Electromagnetics Research C, Vol. 75, 53-61, 2017.
doi:10.2528/PIERC17032402

References:
1. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 66, 2593, 1991.
doi:10.1103/PhysRevLett.66.2593

2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

3. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901

4. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

5. Zhang, S., D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, No. 4, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401

6. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d

7. Smith, D. D., H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A, Vol. 69, No. 6, 063804, 2004.
doi:10.1103/PhysRevA.69.063804

8. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, No. 12, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901

9. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon induced transparency," Phys. Rev. Lett., Vol. 104, No. 24, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902

10. Wang, G., H. Lu, and X. Liu, "Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency," Opt. Express, Vol. 20, 20902, 2012.
doi:10.1364/OE.20.020902

11. Lu, H., X. Liu, and D. Mao, "Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems," Phys. Rev. A, Vol. 85, 053803, 2012.
doi:10.1103/PhysRevA.85.053803

12. Yahiaoui, R., K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, "Terahertz meta-molecules deposited on thin flexible polymer: Design, fabrication and experimental characterization," J. Opt., Vol. 16, 094014, 2014.
doi:10.1088/2040-8978/16/9/094014

13. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," J. Appl. Phys., Vol. 118, 083103, 2015.
doi:10.1063/1.4929449

14. Yahiaoui, R., A. C. Strikwerda, and P. U. Jepsen, "Terahertz plasmonic structure with enhanced sensing capabilities," IEEE Sensors Journal, Vol. 16, 2484, 2016.
doi:10.1109/JSEN.2016.2521708

15. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

16. He, X., Q. Wang, and S. F. Yu, "Investigation of multilayer subwavelength metallic-dielectric stratified structures," IEEE J. Quantum Elect., Vol. 48, 1554, 2012.
doi:10.1109/JQE.2012.2219504

17. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

18. He, S., X. Zhang, and Y. He, "Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI," Opt. Express, Vol. 21, 30664-30673, 2013.
doi:10.1364/OE.21.030664

19. Nikitin, A. Y., F. Guinea, F. J. Garcıa-Vidal, and L. Martın-Moreno, "Edge and waveguide terahertz surface plasmon modes in graphene microribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407

20. Zhu, X., W. Yan, N. A. Mortensen, and S. Xiao, "Bends and splitters in graphene nanoribbon waveguides," Opt. Express, Vol. 21, 3486-3491, 2013.
doi:10.1364/OE.21.003486

21. Shi, X., D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Opt. Express, Vol. 21, No. 23, 28438, 2013.
doi:10.1364/OE.21.028438

22. Shi, X., X. Su, and Y. Yang, "Enhanced tunability of plasmon induced transparency in graphene strips," J. Appl. Phys., Vol. 117, 143101, 2015.
doi:10.1063/1.4916748

23. Lin, Q., X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, "Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings," EPL, Vol. 111, 340004, 2015.

24. Wang, L., W. Li, and X. Jiang, "Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide," Opt. Lett., Vol. 40, No. 10, 2325-2328, 2015.
doi:10.1364/OL.40.002325

25. Fu, G., X. Zhai, H. J. Li, S. X. Xia, and L. L. Wang, "Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips," Plasmonics, 2016, doi:10.1007/s11468-016-0215-4 (2016).

26. Wang, B., X. Zhang, X. Yuan, and J. Teng, "Optical coupling of surface plasmons between graphene sheets," Appl. Phys. Lett., Vol. 100, 131111, 2012.
doi:10.1063/1.3698133

27. Gan, C. H., H. S. Chu, and E. P. Li, "Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies," Phys. Rev. B, Vol. 85, 125431, 2012.
doi:10.1103/PhysRevB.85.125431

28. Zhuang, H., F. Kong, K. Li, and S. Sheng, "Plasmonic bandpass filter based on graphene nanoribbon," Appl. Opt., Vol. 54, 2558-2564, 2015.
doi:10.1364/AO.54.002558

29. Han, Z. H. and S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Express, Vol. 19, 3251-3257, 2011.
doi:10.1364/OE.19.003251


© Copyright 2010 EMW Publishing. All Rights Reserved