PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 193-201

TRI-BAND BPF WITH SIX TRANSMISSION ZEROS BASED ON QUAD-MODE DGS RESONATOR AND MSIR

By B. Peng, S. Li, and L. Deng

Full Article PDF (624 KB)

Abstract:
This paper presents the comprehensive design and analysis of a tri-band bandpass filter (BPF) based on a novel quad-mode defected ground structure resonator (QMDGSR) fed by two 50 Ω microstrip lines under the source-load coupling condition. Four transmission zeros (TZs) are produced in the proposed tri-band bandpass structure with two TZs beside each passband. All the four TZs are thoroughly analysed using equivalent circuit models based on the even-/odd-mode theory, and the corresponding equation for extracting the frequency of each TZ is developed and verified. The bandwidths (BWs) of the 1st and 3rd operating bands are broadened by incorporating the proposed triband bandpass structure with a traditional microstrip stepped impedance resonator (MSIR). Also, two additional TZs are generated due to the coupling between the feeding lines and the newly incorporated MSIR, which significantly result in the passband selectivity improvement. The lower and upper stopband rejections of the fabricated prototype are as high as 83.3 and 43.9 dB, respectively.

Citation:
B. Peng, S. Li, and L. Deng, "Tri-Band BPF with Six Transmission Zeros Based on Quad-Mode DGS Resonator and MSIR," Progress In Electromagnetics Research C, Vol. 75, 193-201, 2017.
doi:10.2528/PIERC17051104

References:
1. Azadegan, R. and K. Sarabandi, "Miniature high-Q double-spiral slot-line resonator filters," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 5, 1548-1557, 2004.
doi:10.1109/TMTT.2004.827044

2. Wang, L. and B. R. Guan, "Compact and high selectivity tri-band BPF using nested DDGSRs," Electron. Lett., Vol. 48, No. 7, 378-379, 2012.
doi:10.1049/el.2012.0118

3. Wei, F., P. Y. Qin, Y. J. Guo, C. Ding, and X. W. Shi, "Compact balanced dual- and tri-band bpfs based on coupled complementary split-ring resonators (C-CSRR)," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 2, 107-109, 2016.
doi:10.1109/LMWC.2016.2517125

4. Ebrahimi, A., W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, "Compact dual-mode wideband filter based on complementary split-ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 3, 152-154, 2014.
doi:10.1109/LMWC.2013.2291869

5. Peng, B., S. F. Li, J. F. Zhu, Q. Y. Zhang, L. Deng, Q. S. Zeng, and Y. Gao, "Wideband bandpass filter with high selectivity based on dual-mode DGS resonator," Microw. Opt. Tech. Lett., Vol. 58, No. 10, 2300-2302, 2016.
doi:10.1002/mop.30037

6. Liu, H.W., L. Shen, Y. Jiang, X. H., Guan, S.Wang, L. Y. Shi, and D. Ahn, "Triple-mode bandpass filter using defected ground waveguide," Electron. Lett., Vol. 47, No. 6, 388-389, 2011.
doi:10.1049/el.2011.0006

7. Peng, B., S. F. Li, J. F. Zhu, Q. Y. Zhang, L. Deng, Q. S. Zeng, and Y. Gao, "Compact quadmode bandpass filter based on quad-mode DGS resonator," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 4, 234-236, 2016.
doi:10.1109/LMWC.2016.2537053

8. Mitsuo, M. and S. Yamashita, "Microstrip realization of generalized chebyshev filters with box-like coupling schemes," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 12, 1413-1417, 1980.
doi:10.1109/TMTT.1980.1130258

9. Peng, Y. T., L. J. Zhang, and Y. Q. Leng, "A dual-mode dual-band bandpass filter using a tristubs loaded multimode resonator (TSLMR)," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 16, 2067-2073, 2014.
doi:10.1080/09205071.2014.957787

10. Deng, K., J. Z. Zhang, B. Wu, S. J. Sun, and X. W. Shi, "Design of microstrip tri-band bandpass filter using square ring loaded resonator," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 18, 2364-2373, 2014.
doi:10.1080/09205071.2014.969812

11. Ai, J., Y. Zhang, K. D. Xu, D. Li, and Y. Fan, "Miniaturized quint-band bandpass filter based on multi-mode resonator and lambda/4 resonators with mixed electric and magnetic coupling," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 5, 343-345, 2016.
doi:10.1109/LMWC.2016.2549643

12. Xu, S. S., K. X. Ma, F. Y. Meng, and K. S. Yeo, "Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 217-219, 2015.
doi:10.1109/LMWC.2015.2400916

13. Chen, H., H. F. Zhao, K. S. Chen, Y. H. Wu, P. Tang, and H. S. Zhong, "A high selectivity quadband bandpass filter based on hybrid-coupled microstrip/slotline quad-mode resonator," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1902-1909, 2013.
doi:10.1080/09205071.2013.828574

14. Lai, X., C. H. Liang, H. Di, and B. Wu, "Design of tri-band filter based on stub loaded resonator and DGS resonator," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 5, 265-267, 2010.
doi:10.1109/LMWC.2010.2045584

15. Wu, B., C. H. Liang, Q. Li, and P. Y. Qin, "Novel dual-band filter incorporating defected SIR and microstrip SIR," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 6, 392-394, 2008.
doi:10.1109/LMWC.2008.922614

16. Peng, B., S. F. Li, B. Zhang, and S. Wang, "Triband filter with high design flexibility and wide stopband using DGS and shorted stub-loaded resonator," Microw. Opt. Tech. Lett., Vol. 57, No. 5, 1098-2760, 2015.
doi:10.1002/mop.29067

17. Rosenberg, U. and S. Amari, "Novel coupling schemes for microwave resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2896-2902, 2002.
doi:10.1109/TMTT.2002.805171

18. Liao, C. M., P. L. Chi, and C. Y. Chang, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 1, 147-153, 2007.
doi:10.1109/TMTT.2006.888580


© Copyright 2010 EMW Publishing. All Rights Reserved