PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 77 > pp. 69-80

DIELECTRIC SHEETS COVERED BROADBAND VIVALDI ANTENNA FOR GAIN ENHANCEMENT

By X. Li, D. W. Pang, H. L. Wang, Y. Zhang, and G. Lv

Full Article PDF (3,215 KB)

Abstract:
To enhance the gain of conventional Vivaldi antenna (CVA), a novel dielectric sheets-covered Vivaldi antenna (DSCVA) is proposed. The dielectric sheets suck energy from the tapered slot region and flare termination region of the CVA, and thus act as surface wave antennas to improve end-fire performances. The CVA, DSCVA as well as the DSCVA with elongated tapered profile (SP-DSCVA) are designed, fabricated and measured. The simulation results are in good agreement with the experimental data. Measurement results show that the gain increase of the DSCVA is up to 5.1 dBi in the range of 3.5-16.5 GHz without increasing antenna length compared to the CVA. More gain enhancement is achieved for the SP-DSCVA. In addition, the half power beamwidths of the CVA as well as the sidelobe levels are improved in both E- and H-planes.

Citation:
X. Li, D. W. Pang, H. L. Wang, Y. Zhang, and G. Lv, "Dielectric Sheets Covered Broadband Vivaldi Antenna for Gain Enhancement," Progress In Electromagnetics Research C, Vol. 77, 69-80, 2017.
doi:10.2528/PIERC17070308
http://www.jpier.org/pierc/pier.php?paper=17070308

References:
1. Gibson, P. J., "The Vivaldi aerial," Proc. IEEE 9th Eur. Microw. Conf., 101-105, 1979.

2. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1317-1320, 2017.
doi:10.1109/LAWP.2016.2633536

3. Yang, Z., J. J. Huang, W. W. Wu, and N. C. Yuan, "An antipodal Vivaldi antenna with bandnotched characteristics for ultra-wideband applications," AEU — Int. J. Electron. Communs., Vol. 76, 152-157, 2017.
doi:10.1016/j.aeue.2017.03.026

4. Mark, R., W. van Cappellen, E. van der Wal, M. Arts, R. van der Brink, and V. Klaas, "Development of a Vivaldi tile for the SKA mid frequency aperture array," 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

5. Kota, K. and L. Shafai, "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electron. Lett., Vol. 47, No. 5, 303-304, 2011.
doi:10.1049/el.2010.7579

6. Teni, G., N. Zhang, J. Qiu, and P. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas Wireless Propag. Lett., Vol. 12, 417-420, 2013.
doi:10.1109/LAWP.2013.2253592

7. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microw., Antennas Propag., Vol. 8, No. 14, 1137-1142, 2014.
doi:10.1049/iet-map.2014.0207

8. Juan, L., F. Guang, Y. Lin, and F. Demin, "A modified balanced antipodal Vivaldi antenna with improved radiation characteristics," Microw. Opt. Technol. Lett., Vol. 55, No. 6, 1321-1325, 2013.
doi:10.1002/mop.27558

9. Akhter, Z., B. N. Abhijith, and M. J. Akhtar, "Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 9, 1183-1197, 2016.
doi:10.1080/09205071.2016.1186574

10. He, S. H., W. Shan, C. Fan, Z. C. Mo, F. H. Yang, and J. H. Chen, "An improved Vivaldi antenna for vehicular wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1505-1508, 2014.

11. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749

12. Fei, P., Y. C. Jiao, W. Hu, and F. S. Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 10, 127-130, 2011.

13. In, D.-M., M.-J. Lee, D. Kim, C.-Y. Oh, and Y.-S. Kim, "Antipodal linearly tapered slot antenna using unequal half-circular defected sides for gain improvements," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1963-1965, 2012.
doi:10.1002/mop.26942

14. De Oliveira, A. M., M. B. Perotoni, S. T. Kofuji, and J. F. Justo, "A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1334-1337, 2015.
doi:10.1109/LAWP.2015.2404875

15. Wang, Y. W., G. M. Wang, and B. F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1380-1383, 2013.
doi:10.1109/LAWP.2013.2285182

16. Alhawari, A. R. H., A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012.
doi:10.2528/PIERC12012906

17. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anistropic zero-index metamaterial," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710

18. Sun, M., Z. N. Chen, and X. M. Qing, "Gain enhancement of 60GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Trans. Antenna Propag., Vol. 61, 1741-1746, 2013.
doi:10.1109/TAP.2012.2237154

19. Chen, L., Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 395-400, 2015.
doi:10.1109/TAP.2014.2365044

20. Gaurav, K. P and K. M. Manoj, "Anisotropic artificial material with ENZ and high refractive index property for high gain Vivaldi antenna design," 15th Mediterranean Microwave Symposium (MMS), 1-4, 2015.

21. Kumar, P., Z. Akhter, A. Kr. Jha, and M. Jaleel Akhtar, "Directivity enhancement of double slot Vivaldi antenna using anisotropic zero-index metamaterials," International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2333-2334, 2015.

22. Li, X. X., L. Sang, Y. Shi, G. Q. Lv, and R. Cao, "Gain improvement of planar printed broadband end-fire antenna," Int. J. Electro., Vol. 104, No. 11, 1906-1919, 2017.
doi:10.1080/00207217.2017.1329949

23. Yngvesson, K. S., T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, "The tapered slot antenna – A new integrated element for millimeter-wave applications," IEEE Trans. Microw. Theory Technol., Vol. 37, No. 2, 365-374, 1989.
doi:10.1109/22.20062

24. Saee Arezoomand, A., R. A. Sadeghzadeh, and M. Naser-Moghadasi, "Investigation and improvement of the phase-center characteristics of Vivaldi’s antenna for UWB applications," Microw. Opt. Technol. Lett., Vol. 58, No. 6, 1275-1281, 2016.
doi:10.1002/mop.29795


© Copyright 2010 EMW Publishing. All Rights Reserved