Vol. 87
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-22
A New Synthesis Algorithm for Minimization of Coplanar Distributed Antenna Arrays in WSNs
By
Progress In Electromagnetics Research C, Vol. 87, 73-85, 2018
Abstract
Distributed antenna arrays are arbitrarily large groups of neighboring nodes which are controlled to form virtual antenna arrays for both transmission and reception. Distributed beamforming (DBF) is widely used in wireless sensor networks (WSNs) and distributed massive Multi-Input Multi-Output (MIMO) systems. The research in DBF has been divided into four major research trends: radiation pattern analysis, optimization of power and lifetime, nodes synchronization, and array design. In this paper, a new algorithm is introduced to synthesize the radiation pattern of an arbitrarily distributed array using reduced number of distributed nodes. In this context, the reduction in the number of nodes results in minimizing the synchronization complexity between the synthesized array nodes and in minimizing the number of RF front ends. Thus, the overall system cost is reduced. In this algorithm, the three antenna array parameters (number of nodes, nodes locations, and nodes excitations) are properly adjusted to construct a close copy of the original array pattern. Different nodes selection ways are utilized to select the nodes required to synthesize the array for a desired radiation pattern. Also, uniform feeding and non-uniform feeding scenarios are introduced. In simulations, the proposed algorithm is applied to the synthesis of pencil-beam patterns. The simulation results reveal that the synthesized radiation patterns highly agree with the ordinary distributed array pattern in the case of non-uniform feeding. Also, the proposed algorithm can be applied to the synthesis of shaped-beam patterns via controlling the three aforementioned antenna array parameters and taking the shaped-beam pattern as the desired pattern in the algorithm.
Citation
Heba Soliman Dawood, Amr Hussein Hussein Abdullah, Entesar Gemeay, and Mohmoud Ahmed Attia Ali, "A New Synthesis Algorithm for Minimization of Coplanar Distributed Antenna Arrays in WSNs ," Progress In Electromagnetics Research C, Vol. 87, 73-85, 2018.
doi:10.2528/PIERC18061104
References

1. Huang, J., P. Wang, and Q. Wan, "Collaborative beamforming for wireless sensor networks with arbitrary distributed sensors," IEEE Communications Letters, Vol. 16, No. 7, 1118-1120, 2012.
doi:10.1109/LCOMM.2012.050912.120370

2. Valenzuela-Valdes, J., F. Luna, R. Luque-Baena, and P. Padilla, "Saving energy in WSNs with beamforming," Proc. IEEE 3rd Int. Conf., 255-260, Cloud Netw., (CloudNet), 2014.

3. Jung, H. and I.-H. Lee, "Analog cooperative beamforming with spherically-bound random arrays for physical-layer secure communications," IEEE Communications Letters, Vol. 22, No. 3, 546-549, 2018.
doi:10.1109/LCOMM.2017.2782807

4. Ma, N. N., K. Buchanan, J. Jensen, and G. Huff, "Distributed beamforming from triangular planar random antenna arrays," MILCOM 2015 --- 2015 IEEE Military Communications Conference, 553-558, 2015.
doi:10.1109/MILCOM.2015.7357501

5. Bhattacharyya, A. K., Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, John Wiley & Sons, 2006.

6. Madhow, U., D. R. Brown, S. Dasgupta, and R. Mudumbai, "Distributed massive MIMO: Algorithms, architectures and concept systems," 2014 Information Theory and Applications Workshop (ITA), 1-7, 2014.

7. Zhang, X., D. Wang, L. Bai, and C. Chen, "Collaborative relay beamforming based on minimum power for M2M devices in multicell systems," International Journal of Distributed Sensor Networks, Vol. 9, No. 12, 293565, 2013.
doi:10.1155/2013/293565

8. Ochiai, H., P. Mitran, H. V. Poor, and V. Tarokh, "Collaborative beamforming for distributed wireless ad hoc sensor networks," IEEE Transactions on Signal Processing, Vol. 53, No. 11, 4110-4124, 2005.
doi:10.1109/TSP.2005.857028

9. Sun, G., Y. Liu, A. Wang, J. Zhang, X. Zhou, and Z. Liu, "Sidelobe control by node selection algorithm based on virtual linear array for collaborative beamforming in WSNs," Wireless Personal Communications, Vol. 90, No. 3, 1443-1462, 2016.
doi:10.1007/s11277-016-3403-9

10. Liang, S., T. Feng, G. Sun, J. Zhang, and H. Zhang, "Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming," 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2164-2168, 2016.
doi:10.1109/CompComm.2016.7925083

11. Jayaprakasam, S., S. K. A. Rahim, and C. Y. Leow, "Distributed and collaborative beamforming in wireless sensor networks: Classifications, trends, and research directions," IEEE Communications Surveys & Tutorials, Vol. 19, No. 4, 2092-2116, 2017.
doi:10.1109/COMST.2017.2720690

12. Jayaprakasam, S., S. K. B. A. Rahim, and C. Y. Leow, "A pareto elite selection genetic algorithm for random antenna array beamforming with low sidelobe level," Progress In Electromagnetics Research B, Vol. 51, 407-425, 2013.
doi:10.2528/PIERB13032008

13. Liu, Y., Z. Nie, and Q. H. Liu, "Reducing the number of elements in a linear antenna array by the matrix pencil method," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2955-2962, Sep. 2008.
doi:10.1109/TAP.2008.928801

14. Liu, Y., Q. H. Liu, and Z. Nie, "Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 604-608, Nov. 2010.

15. Hussein, A., H. Abdullah, A. Salem, S. Khamis, and M. Nasr, "Optimum design of linear antenna arrays using a hybrid MoM/GA algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1232-1235, 2011.
doi:10.1109/LAWP.2011.2174189

16. Isernia, T. and A. F. Morabito, "Mask-constrained power synthesis of linear arrays with even excitations," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3212-3217, 2016.
doi:10.1109/TAP.2016.2556712