PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 86 > pp. 217-232

INFLUENCE OF GEOMETRIC SIMPLIFICATIONS ON HIGH-INTENSITY RADIATED FIELD SIMULATIONS

By G. G. Gutierrez, S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia

Full Article PDF (673 KB)

Abstract:
This paper analyzes the influence of simplifications in electromagnetic models used in the design of protections against High-Intensity Radiated Field (HIRF) threats. Both conductive and radiated effects are evaluated, covering the wide frequency range between 1 MHz and 6 GHz. A real and complex test case such as the power plant of an A400M aircraft was simulated using FDTD method so as to analyse the impact of different simplification approaches. The parameters studied are the inclusion/removal of installations, modification of electrical contacts, material properties, and changes in the cable features. In consequence, we can conclude that for the frequency range around tens or hundreds of megahertzs every detail is important (all the pieces of the model, accurate bundle routes and cable properties), while for higher frequencies only the details nearby the analyzed point are relevant for the results and it is not necessary to distinguish between different materials which are good conductors at this frequency range.

Citation:
G. G. Gutierrez, S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia, "Influence of Geometric Simplifications on High-Intensity Radiated Field Simulations," Progress In Electromagnetics Research C, Vol. 86, 217-232, 2018.
doi:10.2528/PIERC18062705

References:
1. AC 20-158A, "The certification of aircraft electrical and electronic systems for operation in the high-intensity radiated fields (HIRF) environment,", AIR-130, Aviation Safety --- Aircraft Certification Service, Aircraft Engineering Division, May 2014.

2. EUROCAE ED-107, "Guide to certification of aircraft in a high-intensity radiated field (HIRF) environment,", rev A, July 2010/SAE ARP 5583, rev A, June 2010.

3. Gil, E. P. and G. G. Gutierrez, "Simplification and cleaning of complex CAD models for EMC simulations," International Symp. on Electromagnetic Compatibility EMC Europe, York, UK, 2011.
doi:10.2528/PIERC18011020

4. Nogueira de Sao Jose, A., A. Colin, J. Fujioka Mologni, G. Maciulis Dip, U. do Carmo Resende, and S. TrindadeMordente Goncalves, "Computational savings based on three-dimensional automotive geometries’ simplifications in electromagnetics simulations," International Conference on Microwave and Optoelectronics, Rio de Janeiro, 2013.

5. Gutierrez, G. G., S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia, "Influence of geometric simplifications on lightning strike simulations," Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018.
doi:10.1109/TEMC.2013.2291680

6. Junqua, I., J.-P. Parmantier, and M. Ridel, "Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods," Proc. Int. Conf. Electromagn. Adv. Appl. ICEAA, 2011.

7. Gutierrez, G. G., J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, M. F. Pantoja, M. R. Cabello, and S. G. Garcia, "HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method ," IEEE Trans. on Electromagnetic Compatibility, Vol. 56, No. 4, 854-863, 2014.
doi:10.1109/TEMC.1981.303899

8. A400M, , http://militaryaircraft-airbusds.com/aircraft/a400m/a400mabout.aspx.

9. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Trans. on Electromagnetic Compatibility, Vol. 23, No. 2, 88-97, 1981.

10. RTCA/DO-160, "Environmental conditions and test procedures for airborne equipment,", issue G, December 2010/EUROCAE ED-14, issue G, May 2011.

11. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

12. RTCA/DO-307, "Aircraft design and certification for portable electronic device (PED) tolerance,", issue A, December 2016.

13., "CATIA by dassault systemes,", http://www.3ds.com.

14. CADfix, , http://www.transcendata.com/products/cadfix/.
doi:10.1109/TAP.1966.1138693

15. Garcia, S. G., J. Alvarez, L. D. Angulo, and M. R. Cabello, "UGRFDTD EM solver,", http://www.-sembahome.org/, 2011.
doi:10.1109/15.865332

16. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.

17. Berenger, J.-P., "A multiwire formalism for the FDTD method," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.

18. HIRF-SE project (2008), , http://hirfse.axessim.eu/.

19., "Alhambra-UGRFDTD by CSIRC (2013),", https://alhambra.ugr.es/.
doi:10.1109/TEMC.2016.2514379

20. Romero, S. F., G. G. Gutierrez, A. L. Morales, and M. A. Cancela, "Validation procedure of low level coupling tests on real aircraft structure," International Symposium on Electromagnetic Compatibility EMC Europe, 2012.
doi:10.2528/PIERL12030206

21. Gutierrez, G. G., D. M. Romero, M. R. Cabello, E. Pascual-Gil, L. D. Angulo, and S. G. Garcia, "On the Design Of Aircraft Electrical Structure Networks," IEEE Trans. on Electromagnetic Compatibility, Vol. 2, No. 58, 401-408, 2016.
doi:10.1109/TEMC.2017.2648507

22. Gutierrez, G. G., S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, "On the use of FDTD for HIRF validation and certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.
doi:10.1109/15.809798

23. Cabello, M. R., S. Fernandez, M. Pous, E. Pascual-Gil, L. D. Angulo, P. Lopez, P. J. Riu, G. G. Gutierrez, D. Mateos, D. Poyatos, M. Fernandez, J. Alvarez, M. F. Pantoja, M. A. Cancela, F. Silva, A. R. Bretones, R. Trallero, L. N. Fernandez, D. Escot, R. G. Martin, and S. G. Garcia, "SIVA UAV: A case study for the EMC analysis of composite air vehicles," IEEE Trans. on Electromagnetic Compatibility, Vol. 59, No. 4, 1103-1113, 2017.
doi:10.1109/TMTT.2016.2637348

24. Sarto, M., "A new model for the FDTD analysis of the shielding performances of thin composite structures," IEEE Trans. on Electromagnetic Compatibility, Vol. 41, No. 4, 298-306, 1999.
doi:10.1109/TMTT.2004.832019

25. Cabello, M. R., L. D. Angulo, J. Alvarez, I. Flintoft, S. Bourke, J. Dawson, R. G. Martin, and S. G. Garcia, "A hybrid crank-nicolson FDTD subgridding boundary condition for lossy thin-layer modeling," IEEE Trans. on Microwave Theory and Techniques, Vol. 65, No. 5, 1397-1406, 2017.
doi:10.1002/9780470495056

26. Schmidt, S. and G. Lazzi, "Use of the FDTD thin-strut formalism for biomedical telemetry coil designs," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 8, 1952-1956, 2004.

27. Hill, D., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, IEEE Press, New York, 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved