PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 107-118

GAIN AND BANDWIDTH ENHANCEMENT OF CIRCULARLY POLARIZED MSA USING PRS AND AMC LAYERS

By S. D. Jagtap, R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare

Full Article PDF (1,770 KB)

Abstract:
In this paper, a circularly polarized (CP), high gain and wide bandwidth metal plated microstrip antenna (MSA) using partially reflecting surface (PRS) and artificial magnetic conductor (AMC) layers is proposed. The bandwidth of MSA is increased primarily, using AMC layers and gain is increased by placing the antenna in a Fabry-Perot cavity (FPC) resonator. The two slotted AMCs are designed to resonate at two frequencies which electromagnetically couple to provide wide bandwidth. The FPC antenna with PRS and AMC layers provides higher gain, more impedance bandwidth, less gain variation and more miniaturization than the antenna without AMC layers. The proposed antenna provides S11 < -10 dB, axial ratio (AR) < 3dB and 17.4 dBi peak gain with gain variation < 3 dB over 5.725 GHz to 6.4 GHz frequency band. Broadside radiation patterns have side lobe level (SLL) < -20 dB, cross polarization (CPL) < -16 dB and front to back (F/B) lobe ratio > 20 dB. The overall antenna dimensions are 2.83λ0 × 3.23λ0 × 0.49λ0, where, λ0 is the free space wavelength corresponding to the central frequency of 5.725-6.4 GHz. The proposed structure is fabricated, and the measured results agree with simulation ones.

Citation:
S. D. Jagtap, R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and Bandwidth Enhancement of Circularly Polarized MSA Using PRS and AMC Layers," Progress In Electromagnetics Research C, Vol. 87, 107-118, 2018.
doi:10.2528/PIERC18072205

References:
1. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially re," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

2. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864

3. Ta, S. X. and I. Park, "Compact wideband circularly polarized patch antenna array using metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1932-1936, Mar. 2017.
doi:10.1109/LAWP.2017.2689161

4. Martinis, M., L. Bernard, K. Mahdjoubi, R. Sauleau, and S. Collardey, "Wideband antenna in cavity based on metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1053-1056, 2016.
doi:10.1109/LAWP.2015.2491609

5. Feng, G., L. Chen, X. Xue, and X. Shi, "Broadband surface-wave antenna with a novelnonuniform tapered metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2902-2905, 2017.
doi:10.1109/LAWP.2017.2751621

6. Chen, X., Z. Luo, P. Feng, and K. Huang, "Effective reflective characteristics of superstrates and their effects on the resonant cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1572-1580, Apr. 2015.
doi:10.1109/TAP.2015.2399508

7. Narayan, S. and R. M. Jha, "Electromagnetic techniques and design strategies for FSS structure applications," IEEE Antennas and Propagation Magazine, 135-143, Oct. 2015.

8. Montisci, G., et al., "Design of multilayer dielectric cover to enhance gain and efficiency of slot arrays," International Journal of Antennas and Propagation, Vol. 2013, 6 pages, Article ID 917676, 2013.

9. Wang, N., J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 229-232, 2015.
doi:10.1109/LAWP.2014.2360703

10. Qin, F., S. Gao, G. Wei, Q. Luo, C.-X. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna," IEEE Antennas and Propagation Magazine, 127-135, Oct. 2015.

11. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533

12. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antennawith dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103

13. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3474-3481, Jul. 2014.
doi:10.1109/TAP.2014.2320755

14. Chacko, B. P., G. Augustin, and T. A. Denidni, "FPC antennas, C-band, point to point communication," IEEE Antennas and Propagation Magazine, Vol. 62, No. 1, 19-26, Jan. 2014.
doi:10.1109/TAP.2013.2286839

15. Orr, R., G. Goussetis, and V. Fusco, "Design method for circularly polarized Fabry Perot cavity antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3474-3481, 2014.
doi:10.1109/TAP.2014.2320755

16. Liu, H., S. Lei, X. Shi, and L. Li, "Study of antenna superstrates using metamaterials for directivity enhancement based on Fabry Perot resonant cavity," International Journal of Antennas and Propagation, Vol. 2013, 1-10, Article-ID 209741, Hindwai Publishing Corporation, 2013.

17. Xu, Y., R. Lian, Z. Wang, and Y.-Z. Yin, "Wideband Fabry-Perot resonator antenna with single-layer partially reflective surface," Progress In Electromagnetics Research Letters, Vol. 65, 37-41, 2017.
doi:10.2528/PIERL16072806

18. Ji, L.-Y., P.-Y. Qin, and Y. J. Guo, "Wideband Fabry-Perot cavity antenna with a shaped ground plane," IEEE Access, Vol. 6, 2291-2297, 2018.
doi:10.1109/ACCESS.2017.2782749

19. Wang, N., L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna withelectrically thin dielectric superstrates," IEEE Access, Vol. 6, 14966-14973, 2018.
doi:10.1109/ACCESS.2018.2810085

20. Guzman-Quiros, R., A. R. Weily, J. L. Gomez-Tornero, and Y. J. Guo, "A Fabry-Perot antenna with two-dimensional electronic beam scanning," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1014-1017, 2015.

21. Xie, P. and G.-M. Wang, "Design of a frequency reconfigurable Fabry Perot cavity antenna with single layer partially reflecting surface," Progress In Electromagnetics Research Letters, Vol. 70, 115-121, 2017.
doi:10.2528/PIERL17072505

22. Jia, Y., Y. Liu, S. Gong, W. Zhang, and G. Liao, "A low RCS and high gain circularly polarized antenna with a low profile," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2477-2480, 2017.
doi:10.1109/LAWP.2017.2725380

23. Wu, Z.-H. and W.-X. Zhang, "Broadband printed compound air-fed array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 187-191, 2010.
doi:10.1109/LAWP.2010.2045470

24. Qin, F., S. Gao, Q. Luo, G. Wei, J. Xu, J. Li, C. Wu, C. Gu, and C. Mao, "A triband low-profile high-gain planar antenna using Fabry-Perot cavity," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2683-2688, 2016.
doi:10.1109/TAP.2017.2670564

25. Jagtap, S., A. Chaudhari, N. Chaskar, S. Kharche, and R. K. Gupta, "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 509-512, Mar. 2018.
doi:10.1109/LAWP.2018.2799873


© Copyright 2010 EMW Publishing. All Rights Reserved