Vol. 89

Latest Volume
All Volumes
All Issues

Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber

By Feroza Begum and Pg Emeroylariffion Abas
Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019


This research explores a silica based highly nonlinear photonic crystal fiber of near infrared window; solid silica core photonic crystal fiber is suitable for propagating light towards the near-infrared wavelength region. Full vector finite difference method is used for numerical simulation, by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method to show that the design exhibits high nonlinear coefficient, near zero ultra-flattened dispersion, low dispersion slope and very low confinement losses. It is demonstrated that it is possible to generate high power wide supercontinuum spectrum using 2.5 ps input pulses at 1.06 μm, 1.30 μm and 1.55 μm center wavelengths. It is observed that supercontinuum spectrum is broadened from 960 nm to 1890 nm by considering center wavelengths of 1.06 μm, 1.31 μm, and 1.55 μm into silica based index guiding highly nonlinear photonic crystal fiber. Furthermore, immensely short fiber length of 1 m at center wavelengths of 1.06 μm, 1.31 μm and 1.55 μm is possible using the proposed highly nonlinear photonic crystal fiber. The generated high power wide supercontinuum spectrum is applicable as a laser light source in near infrared band.


Feroza Begum and Pg Emeroylariffion Abas, "Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber," Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019.


    1. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.

    2. Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, Vol. 21, No. 19, 1547-1549, 1996.

    3. Begum, F., Y. Namihira, S. M. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, "Design and analysis of novel highly nonlinear hexagonal photonic crystal fibers with ultra-flattened chromatic dispersion," Optics Communications, Vol. 282, No. 7, 1416-1421, 2009.

    4. Begum, F., Y. Namihira, T. Kinjo, and S. Kaijage, "Supercontinuum generation in photonic crystal fibers at 1.06 μm, 1.31 μm and 1.55 μm wavelengths," Electronics Letters, Vol. 46, No. 22, 1518-1520, 2010.

    5. Colston, Jr., B. W., U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, "Dental OCT," Opt. Express, Vol. 3, No. 6, 230-238, 1998.

    6. Namihira, Y., J. Liu, T. Koga, F. Begum, M. A. Hossain, N. Zou, S. F. Kaijage, Y. Hirako, H. Higa, and M. A. Islam, "Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion in 1.31 μm Waveband," Optical Review, Vol. 18, No. 6, 436-440, 2011.

    7. Izatt, J. A. and M. A. Choma, Optical Coherence Tomography, 47-72, Professor Dr. Wolfgang Drexler, Professor Dr. James G. Fujimoto, ed., Springer Publisher, 2008.

    8. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, Vol. 12, No. 10, 843-852, 2004.

    9. Shibata, H., N. Ozaki, T. Yasuda, S. Ohkouchi, N. Ikeda, H. Ohsato, E. Watanabe, Y. Sugimoto, K. Furuki, K. Miyaji, and R. A. Hogg, "Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape," Japanese Jour. of Appl. Phys., Vol. 54, 04DG07-1-04DG07-5, 2015.

    10. Calmano, T., J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, "Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing," Appl. Phys. B, Vol. 100, 131-135, 2010.

    11. Zaytsev, A., C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Opt. Express, Vol. 21, No. 13, 16056-16062, 2013.

    12. Aguirre, A. D., N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express, Vol. 14, No. 3, 1145-1160, 2006.

    13. Louot, C., B. M. Shalaby, E. Capitaine, S. Hilaire, P. Leproux, D. Pagnoux, and V. Couderc, "Supercontinuum Generation in an Ytterbium-Doped Photonic Crystal Fiber for CARS Spectroscopy," IEEE Photonics Technol. Letters, Vol. 28, No. 19, 2011-2014, 2016.

    14. Raj, G. J., R. V. J. Raja, N. Nagarajan, and G. Ramanathan, "Tunable broadband spectrum under the influence of temperature in IR region using CS2 core photonic crystal fiber," Journal of Lightwave Technol., Vol. 34, No. 15, 3503-3509, 2016.

    15. Jain, D., R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, "Record power, ultrabroadband supercontinuum source based on highly GeO2 doped silica fiber," Opt. Express, Vol. 24, No. 23, 26667-26677, 2016.

    16. Porcel, M. A. G., F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. V. D. Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, and K.-J. Boller, "Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths," Opt. Express, Vol. 25, No. 2, 1542-1554, 2017.

    17. Tarnowski, K., T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, "Coherent supercontinuum generation up to 2.2 μm in an all-normal dispersion microstructured silica fiber," Opt. Express, Vol. 24, No. 26, 30523-30536, 2016.

    18. Ali, R. A. H., M. F. O. Hameed, and S. S. A. Obayya, "Ultrabroadband supercontinumm generation through photonic crystal fiber with As2S3 chalcogenide core," J. Lightwave Techn., Vol. 34, No. 23, 5423-5430, 2016.

    19. Yang, L., B. Zhange, K. Yin, J. Yao, G. Liu, and J. Hou, "0.6–3.2 μm supercontinuum generation in a step-index germanium-core fiber using a 4.4 kW peak-power pump laser," Opt. Express, Vol. 24, No. 12, 12600-12606, 2016.

    20. Namihira, Y., M. A. Hossain, T. Koga, M. A. Islam, S. M. A. Razzak, S. F. Kaijage, Y. Hirako, and H. Higa, "Design of highly nonlinear dispersion flattened hexagonal photonic crystal fibers for dental optical coherence tomography applications," Opt. Review, Vol. 19, No. 2, 78-81, 2012.

    21. Karim, M. R., H. Ahmad, and B. M. A. Rahman, "All-normal dispersion chalcogenide PCF for ultraflat mid-infrared supercontinuum generation," IEEE Photonics Technology Letters, Vol. 29, No. 21, 1792-1795, 2017.

    22. Ahmad, H., M. R. Karim, and B. M. A. Rahman, "Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime," Applied Physics B, Vol. 124, No. 3, Article 47, 2018.

    23. Guo, Z., J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, "Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.

    24. Begum, F., Y. Namihira, T. Kinjo, and S. Kaijage, "Broadband supercontinuum spectrum generated highly nonlinear photonic crystal fiber applicable to medical and optical communication systems," Japanese Journal of Applied Physics, Vol. 50, 092502-092507, 2011.

    25. Begum, F. and Y. Namihira, "Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 μm wavelengths for medical imaging and optical transmission systems," Natural Science, Vol. 3, No. 5, 401-407, 2011.

    26. Mohamed, L. F., C. Lynda, and H. Issam, "Supercontinuum generation in silica photonic crystal fiber at 1.3 μm and 1.65 μm wavelengths for optical coherence tomography," Optik, Vol. 152, No. 1, 106-115, 2018.

    27. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, No. 10, 3728-3736, 2005.

    28. Shen, L.-P., W.-P. Huang, and S.-S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightw. Technol., Vol. 21, No. 7, 1644-1651, 2003.

    29. Zhu, Z. and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express, Vol. 10, No. 17, 853-864, 2002.

    30. Guo, S., F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express, Vol. 12, No. 15, 3341-3352, 2004.

    31. Begum, F., Y. Namihira, S. M. A. Razzak, and N. Zou, "Novel Square photonic crystal fibers with ultra-flattened chromatic dispersion and low confinement losses," IEICE Transaction on Electronics, Vol. E90-C, No. 3, 607-612, 2007.

    32. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, 2003.

    33., Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor (eds.), Cambridge University Press, 2010.

    34. Sellmier, W., "Zur Erklärung der abnormen Farbenfolge im Spektrum einiger Substanzen," Annalen der Physik, Vol. 219, No. 6, 272-282, 1871.