Vol. 93
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-10
Novel Dual-Band 28/38 GHz MIMO Antennas for 5G Mobile Applications
By
Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019
Abstract
This paper introduces new compact microstrip line fed dual-band printed MIMO antennas resonating at 28 GHz and 38 GHz which are appropriate for 5G mobile communications. The first design in this work is a two-element conventional rectangular microstrip patch antenna with inset feed intended for 28 GHz and 38 GHz bands. The second design is symmetric dual-band two-element MIMO slotted-rectangular patches via microstrip inset fed lines. The dual-band response is attained from inverted I-shaped slots inserted in main patches. The third design is symmetric dual-band four-element MIMO antenna with inverted I-shaped slotted rectangular patches. A slot formed DGS is inserted in the partial rectangular ground plane. The substrate size is 55 x 110 mm2, while the introduced antennas have very modest planar configurations and inhabit an insignificant area which make them fit easier within handset devices for the forthcoming 5G mobile communications. Better return losses and larger bandwidths are realized. The MIMO antennas have low mutual coupling without using any added constructions. The antenna systems offer appropriate values of directivity, gain, and radiation efficiency with anticipated reflection and correlation coefficient characteristics which are seemly for 5G mobile applications. The antenna systems are fabricated by a photolithography process that uses optic-radiation to copy the mask on a silicon slab by the aid of photoresist layers and measured using Vector Network Analyzer ZVA 67 (measures up to 67 GHz frequency) with a port impedance of 50 Ω.
Citation
Hala M. Marzouk, Mohamed Ismail Ahmed, and Abdelhameed Abdelmoneim Shaalan, "Novel Dual-Band 28/38 GHz MIMO Antennas for 5G Mobile Applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303
References

1. Babu, K. V. and B. Anuradha, "Design of multi-band minkowski MIMO antenna to reduce the mutual coupling," Journal of King Saud University-Engineering Sciences, 2018.

2. Ashraf, N., O. M. Haraz, M. M. M. Ali, M. A. Ashraf, and S. A. S. Alshebili, "Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication," AEU --- International Journal of Electronics and Communications, Vol. 70, 257-264, 2016.
doi:10.1016/j.aeue.2015.12.005

3. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456

4. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband EH shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIER09082302

5. Hong, W., Z. H. Jiang, C. Yu, J. Zhou, P. Chen, Z. Yu, et al. "Multibeam antenna technologies for 5G wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 65, 6231-6249, 2017.
doi:10.1109/TAP.2017.2712819

6. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401

7. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and N. Tewari, "Design of triple-band MIMO antenna with one band-notched characteristic," Progress In Electromagnetics Research, Vol. 86, 41-53, 2018.
doi:10.2528/PIERC18051902

8. Alreshaid, A. T., O. Hammi, M. S. Sharawi, and K. Sarabandi, "A compact millimeter-wave slot antenna array for 5G standards," 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 84-85, 2015.
doi:10.1109/APCAP.2015.7374281

9. Ali, M. M. M. and A.-R. Sebak, "Directive antennas for future 5G mobile wireless communications," General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, 2017.

10. Hegazy, M. B. E. M. E. A., "Design and analysis of 28 GHz rectangular microstrip patch array antenna," WSEAS Transactions on Communications, Vol. 17, 1-9, 2018.

11. Rafique Umair, K. H., "Dual-band microstrip patch antenna array for 5G mobile communications," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS | FALL), 55-59, Singapore, Nov. 19-22, 2017.

12. Amin, M. M., M. Mansor, N. Misran, and M. Islam, "28/38 GHz dual band slotted patch antenna with proximity-coupled feed for 5G communication," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, 2017.

13. Sunthari, P. M. and R. Veeramani, "Multiband microstrip patch antenna for 5G wireless applications using MIMO techniques," 2017 First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), 1-5, 2017.

14. Ali, M. M. M. and A.-R. Sebak, "Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, 2016.
doi:10.1109/APUSNCURSINRSM.2018.8608394

15. Yan, K., P. Yang, F. Yang, L. Zeng, and S. Huang, "Eight-antenna array in the 5G smartphone for the dual-band MIMO system," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 41-42, 2018.

16. Hasan, M. N. and M. Seo, "Compact omnidirectional 28 GHz 2 x 2 MIMO antenna array for 5G communications," 2018 International Symposium on Antennas and Propagation (ISAP), 1-2, 2018.
doi:10.1109/TAP.2017.2740963

17. Hong, W., K.-H. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Transactions on Antennas and Propagation, Vol. 65, 6250-6261, 2017.
doi:10.2528/PIERC18061803

18. Chaudhari, A. A. and R. K. Gupta, "A simple tri-band MIMO antenna using a single ground stub," Progress In Electromagnetics Research, Vol. 86, 191-201, 2018.

19. Balanis, C. A., Antenna Theory --- Analysis and Design, A John Wiley & Son, Inc., Publication, 2005.

20. Jetti, C. R. and V. R. Nandanavanam, "Compact MIMO antenna with WLAN band-notch characteristics for portable UWB systems," Progress In Electromagnetics Research, Vol. 88, 1-12, 2018.
doi:10.1016/j.aeue.2018.09.045

21. Salamin, M. A., S. Das, and A. Zugari, "Design and realization of low profile dual-wideband monopole antenna incorporating a novel ohm (Ω­) shaped DMS and semi-circular DGS for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 97, 45-53, 2018.

22. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, 2014.