PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 95 > pp. 183-194

STAIRCASE FRACTAL LOADED MICROSTRIP PATCH ANTENNA FOR SUPER WIDE BAND OPERATION

By S. Das, D. Mitra, and S. R. Bhadra Chaudhuri

Full Article PDF (828 KB)

Abstract:
In this paper a staircase fractal curve is applied on a microstrip line fed truncated corner square patch antenna to achieve Super Wide Band (SWB) operation. The proposed antenna exhibits an impedance bandwidth from 0.1 GHz to 30 GHz with a ratio impedance bandwidth of 300:1 for S11 ≤ -10 dB. The bandwidth enhancement of the proposed antenna structure due to the fractal curve is shown in a step by step manner. The Bandwidth Dimension Ratio (BDR) of the proposed antenna design is obtained as 496675. Relatively stable omnidirectional radiation pattern and satisfactory value of gain are obtained over the operation band. Time domain analysis has also been performed to check the applicability of the proposed design as SWB antenna.

Citation:
S. Das, D. Mitra, and S. R. Bhadra Chaudhuri, "Staircase Fractal Loaded Microstrip Patch Antenna for Super Wide Band Operation," Progress In Electromagnetics Research C, Vol. 95, 183-194, 2019.
doi:10.2528/PIERC19070105

References:
1. Tran, D., P. Aubry, A. Szilagyi, I. E. Lager, O. Yarovyi, and L. P. Ligthart, On the Design of a Super Wide Band Antenna, Ultrawide Band, Intech Open, 2010.

2. Liang, X.-L., S.-S. Zhong, and W. Wang, "Elliptically planar monopole antenna with extremely wide bandwidth," Electronics Letters, Vol. 42, No. 8, 441-442, 2006.
doi:10.1049/el:20060438

3. Liu, J., K. P. Esselle, S. G. Hay, and S. Zhong, "Achieving ratio bandwidth of 25 : 1 from a printed antenna using a tapered semi-ring feed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1333-1336, 2011.

4. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super-wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009.
doi:10.1002/mop.24222

5. Barbarino, S. and F. Consoli, "Study on super-wideband planar asymmetrical dipole antennas of circular shape," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4074-4078, 2010.
doi:10.1109/TAP.2010.2078469

6. Liu, J., K. P. Esselle, S. G. Hay, and S. Zhong, "Compact super-wideband asymmetric monopole antenna with dual-branch feed for bandwidth enhacement," Electronics Letters, Vol. 49, No. 8, 515-516, 2013.
doi:10.1049/el.2012.4015

7. Samsuzzaman, M. and M. T. Islam, "A semicircular shaped super wide band patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, 2015.
doi:10.1002/mop.28872

8. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feedline, feed region and patch for super wide band applications," IET Microwaves Antennas and Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094

9. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single band suppression," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 143-150, 2017.
doi:10.1017/S1759078715000963

10. Aziz, S. Z. and M. F. Jamlos, "Compact super wideband patch antenna design using diversities of reactive loaded technique," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2811-2814, 2016.
doi:10.1002/mop.30152

11. Okas, P., A. Sharma, and R. K. Gangwar, "Circular base loaded modified rectangular monopole radiator for super wideband application," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2421-2428, 2017.
doi:10.1002/mop.30757

12. Okas, P., A. Sharma, and R. K. Gangwar, "Super-wideband CPW fed modified square monopole antenna with stabilized radiation characteristics," Microwave and Optical Technology Letters, Vol. 60, No. 3, 568-575, 2018.
doi:10.1002/mop.31006

13. Rahman, M. N., M. T. Islam, M. Z. Mahmud, and M. Samsuzzaman, "Compact microstrip patch antenna proclaiming super wideband characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2563-2570, 2017.
doi:10.1002/mop.30770

14. Rahman, S. U., Q. Cao, H. Ullah, and H. Khalil, "Compact design of trapezoid shape monopole antenna for SWB application," Microwave and Optical Technology Letters, Vol. 61, No. 8, 1931-1937, 2019.
doi:10.1002/mop.31805

15. Chen, K.-R., C.-Y.-D. Sim, and J.-S. Row, "A compact monopole antenna for super wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 488-491, 2011.
doi:10.1109/LAWP.2011.2157071

16. Waladi, V., N. Mohammadi, Y. Zehforoosh, A. Habashi, and J. Nourinia, "A novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 651-654, 2013.
doi:10.1109/LAWP.2013.2262571

17. Singhal, S. and A. K. Singh, "Modified star-star fractal (MSSF) super-wideband antenna," Microwave and Optical Technology Letters, Vol. 59, No. 3, 624-630, 2017.
doi:10.1002/mop.30357

18. Singhal, S. and A. K. Singh, "CPW fed hexagonal sierpinski super wideband fractal antenna," IET Microwaves Antennas and Propagation, Vol. 10, No. 15, 1701-1707, 2016.
doi:10.1049/iet-map.2016.0154

19. Figueroa-Torres, C. A., J. L. Medina-Monroy, H. Lobato-Morales, R. A. Chavez-Perez, and A. Calvillo-Tellez, "A novel fractal antenna based on the sierpinski structure for super wide-band applications," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1148-1153, 2017.
doi:10.1002/mop.30489

20. Dorostkar, M. A., M. T. Islam, and R. Azim, "Design of a novel super wide band circular-hexagonal fractal antenna," Progress In Electromagnetics Research, Vol. 139, 229-245, 2013.
doi:10.2528/PIER13030505

21. Singhal, S. and A. K. Singh, "Asymmetrically CPW-fed circle inscribed hexagonal super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2794-2799, 2016.
doi:10.1002/mop.30156

22. Darimireddy, N. K., R. R. Reddy, and A. M. Prasad, "A miniaturized hexagonal-triangular fractal antenna for wide-band applications," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 104-110, 2018.
doi:10.1109/MAP.2018.2796441

23. Dastranj, A., F. Ranjbar, and M. Bornapour, "A new compact circular shape fractal antenna for broadband wireless communication applications," Progress In Electromagnetics Research C, Vol. 93, 19-28, 2019.
doi:10.2528/PIERC19031001

24. Quintero, G., J.-F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, 2011.
doi:10.1109/TAP.2011.2152322


© Copyright 2010 EMW Publishing. All Rights Reserved