PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 99 > pp. 179-191

DESIGN OF SUB-THZ BEAM SCANNING ANTENNA USING LUNEBURG LENS FOR 5G COMMUNICATIONS OR BEYOND

By T. A. Nisamol, K. K. Ansha, and P. Abdulla

Full Article PDF (871 KB)

Abstract:
This work presents the design and simulation of a beam scanning antenna at 300 GHz using Luneburglens for 5th generation communication applications or beyond. The basic antenna consists of a highly directional Yagi-Uda antenna with lens shaped configuration (substrate lens antenna - SLA) and designed using multiple parallel elements such as one reflector and one driven element with 6 directors. The SLA is focused by Luneburg lens, which is modeled using a unique foam material AirexR82 with relative dielectric constant of 1.12, and it is pressed to realize different dielectric constants in order to obey the index law inside the lens. The final nine - element array of SLA integrated with Luneburg lens provides a 50% increase in bandwidth compared with conventional Yagi-Uda antenna along with an increase in the gain of 31.3% compared with single SLA. The designed model can achieve a beam scan coverage up to 146˚ with a maximum gain of 17.1 dBi and an estimated efficiency of 92.9%. The beam scanning antenna provides a wide bandwidth of 83 GHz starting from 289 GHz to 372 GHz. The analysis of the proposed antenna is done in CST suite and is validated using HFSS software.

Citation:
T. A. Nisamol, K. K. Ansha, and P. Abdulla, "Design of Sub-THz Beam Scanning Antenna Using Luneburg Lens for 5G Communications or Beyond," Progress In Electromagnetics Research C, Vol. 99, 179-191, 2020.
doi:10.2528/PIERC19121101

References:
1. Liu, D., W. Hong, T. S. Rappaport, C. Luxey, and W. Hong, "What will 5G antennas and propagation be?," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6205-6212, 2017.
doi:10.1109/TAP.2017.2774707

2. Malhotra, I., K. R. Jha, and G. Singh, "Terahertz antenna technology for imaging applications: A technical review," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 3, 271-290, 2018.
doi:10.1017/S175907871800003X

3. Guo, L., M. Deng, Q. Zhang, X. Zhang, and Z. Yuan, "Dual-polarized on-chip antenna for 300 GHz full-duplex communication system," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2837629, 7 pages, 2017.

4. Balanis, C. A., "Antenna Theory: Analysis and Design," Wiley Publishers, Hoboken, 2017.

5. Ismail, M. Y. and N. H. Sulaiman, "Enhanced bandwidth reflectarray antenna using variable dual gap," International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering, IEEE, Bandung, Indonesia, 2011.

6. Florencio, R., R. R. Boix, and d J. A. Encinar, "Design of a reflectarray antenna at 300 GHz based on cells with three coplanar dipoles," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE, 2013.

7. Munoz-Acevedo, A., M. Sierra-Castaner, and J. L. Besada, "Antenna measurement system at 300 GHz for the terasense project," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, 2010.

8. Rey, S., T. Merkle, A. Tessmann, and T. Kürner, "A phased array antenna with horn elements for 300 GHz communications," Proceedings of ISAP-2016, 122-123, IEEE, Okinawa, Japan, 2016.

9. Azizi, M. K., M. A. Ksiksi, H. Ajlani, and A. Gharsallah, "Terahertz graphene-based reconfigurable patch antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017.

10. Chen, J., K. Yuan, L. Shen, X. Deng, L. Hong, and M. Yao, "Studies of terahertz wave propagation in realistic reentry plasma sheath," Progress In Electromagnetics Research, Vol. 157, 21-29, 2016.
doi:10.2528/PIER16061202

11. Priebe, S., C. Jastrow, M. Jacob, T. Kleine-Ostmann, T. Schrader, and T. K¨urner, "Channel and propagation measurements at 300 GHz," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, May 2011.
doi:10.1109/TAP.2011.2122294

12. Bankey, V. and N. Anvesh Kumar, "Design of a Yagi-Uda antenna with gain and bandwidth enhancement for Wi-Fi and Wi-Max applications," International Journal of Antennas (JANT), Vol. 2, No. 1, 1-14, January 2016.

13. Cai, R.-N., Y. Chuan, L. Shu, X.-Q. Zhang, X.-Y. Zhang, and X.-F. Liu, "Design and analysis of printed Yagi-Uda antenna and two-element array for WLAN applications," International Journal of Antennas and Propagation, Article Id 651789, 8 Pages, 2012.

14. Han, K., T. K. Nguyen, and I. Park, "Yagi-Uda antenna with U-shaped dipole for a THz photomixer," 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009.

15. Mathew, P. K., "A three element Yagi Uda antenna for RFID systems," IJEDR, Vol. 2, No. 1, ISSN: 2321-9939, 2014.

16. Sethi, W. T., O. De Sagazan, H. Vettikalladi, H. Fathallah, and M. Himdi, "Yagi-Uda nantenna for 1550 nanometers optical communication systems," International Journal of Antennas and Propagation, Vol. 60, No. 9, 2236-2242, 2018.

17. Sharma, Y. and S. Nagpal, "Radiation pattern optimization of a 6 element Yagi-Uda antenna," IJREST International Journal of Research Review In Engineering Science & Technology, Vol. 5, No. 1, Issn 2278-6643, 2016.

18. Prasada Reddy, M., "Directional Yagi Uda antenna for VHF applications," International Journal of Advancements in Technology, Vol. 9, No. 3, Issn: 0976-4860, 2018.

19. Kamran Saleem, M., H. Vettikaladi, M. A. S. Alkanhal, and M. Himdi, "Lens antenna for wide angle beam scanning at 79 GHz for automotive short range radar applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2041-2046, Apr. 2017.
doi:10.1109/TAP.2017.2669726

20. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Luneburg lens," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 163-166, 2003.
doi:10.1109/LAWP.2003.819045

21. Foster, R., D. Nagarkoti, J. Gao, B. Vial, F. Nicholls, C. Spooner, S. Haq, and Y. Hao, "Beam-steering performance of flat Luneburg lens at 60GHz for future wireless communications," International Journal of Antennas and Propagation, Article Id 7932434, 8 pages, 2017.

22. Vettikalladi, H., W. T. Sethi, A. F. Bin Abas, W. Ko, M. A. Alkanhal, and M. Himdi, "Sub-THz antenna for high-speed wireless communication systems," International Journal of Antennas and Propagation, Article ID 9573647, 9 pages, 2019.

23. Knyazev, S., A. Korotkov, B. Panchenko, and S. Shabunin, "Investigation of spherical and cylindrical Luneburg lens antennas by the Green’s function method," IEEE Radio and Antenna Days of the Indian Ocean, IEEE Radio, 2015.

24. Zhou, B., Y. Yang, H. Li, and T. J. Cui, "Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials," Journal of Applied Physics, Vol. 110, 084908, 2011.
doi:10.1063/1.3651376

25. Chen, H., Q. Cheng, A. Huang, J. Dai, H. Lu, J. Zhao, H. Ma, W. Jiang, and T. J. Cui, "Modified Luneburg lens based on metamaterials," International Journal of Antennas and Propagation, Article Id 902634, 6 pages, 2015.

26. Liang, M., W.-R. Ng, K. Chang, K. Gbele, M. E. Gehm, and H. Xin, "A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1799-1807, 2014.
doi:10.1109/TAP.2013.2297165

27. Pfeiffer, C. and A. Grbic, "A printed, broadband Luneburg lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 3055-3059, 2010.
doi:10.1109/TAP.2010.2052582

28. Numan, A. B., J.-F. Frigon, and J.-J. Laurin, "Printed W-band multibeam antenna with Luneburg lens-based beamforming network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5614-5619, 2018.
doi:10.1109/TAP.2018.2860119

29. IEEE Standard P1597, "Standard for validation of computational electromagnetics computer modeling and simulation --- Part 1, 2,", 2008.

30. Duffy, A. P., A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I --- The FSV method," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 449-459, Aug. 2006.
doi:10.1109/TEMC.2006.879358

31. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II --- Assessment of FSV performance," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 460-467, Aug. 2006.
doi:10.1109/TEMC.2006.879360


© Copyright 2010 EMW Publishing. All Rights Reserved