PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 102 > pp. 13-30

COMPACT DUAL-BAND MIMO ANTENNA SYSTEM FOR LTE SMARTPHONE APPLICATIONS

By H. S. Aziz and D. K. Naji

Full Article PDF (2,706 KB)

Abstract:
The design of an eight-port MIMO antenna at the sub-6-GHz (LTE 42/43 and 46) bandsfor fifth-generation (5G) smartphone is presented. First, based on the Babinet's principle, a microstrip slot antenna (MSA) is designed from its counterpart complementary structure, microstrip patch antenna (MPA) to operate over the LTE 46 band. In order to make the MSA to operate at the specified three LTE bands, a proposed single antenna, namely RMSA, is achieved by adding a strip-ring resonator within the grounded slot of MSA which shows a good measured impedance bandwidth (S11 ≤ -6 dB) of 3.28 ~ 3.84 GHz and 5.14 ~ > 6.0 GHz. Then, eight similar antenna elements of RMSA are printed on a smartphone printed circuit board (PCB). An FR4 substrate is used as the system PCB with an overall dimension of 80 × 150 × 0.8 mm3. Two techniques, namely polarization and pattern diversity, are exhibited by designing the MIMO system due to the orthogonal arrangement of microstrip lines feeding the RMSAs. Simulated and experimental results are conducted to examine the performance of the designed MIMO antenna. Good isolation, acceptable gain, and efficiency are obtained over the bands of interest which verify the suitability of the proposed system for MIMO smartphone applications.

Citation:
H. S. Aziz and D. K. Naji, "Compact Dual-Band MIMO Antenna System for LTE Smartphone Applications," Progress In Electromagnetics Research C, Vol. 102, 13-30, 2020.
doi:10.2528/PIERC20021101
http://www.jpier.org/pierc/pier.php?paper=20021101

References:
1. Parchin, N. O., H. J. Basherlou, M. Alibakhshikenari, Y. O. Parchin, Y. I. Al-Yasir, R. A. Abd-Alhameed, and E. Limiti, "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO Systems," Electronics, Vol. 8, No. 5, 1-17, 2019.

2. Rahman, M., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors, Vol. 18, 3155, 2018.
doi:10.3390/s18093155

3. Rahman, M., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Resonator based switching technique between ultra wide band (UWB) and single/dual continuously tunable-notch behaviors in UWB radar for wireless vital signs monitoring," Sensors, Vol. 18, 3330, 2018.
doi:10.3390/s18103330

4. Rahman, M., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB Applications," Electronics, Vol. 8, 158, 2019.
doi:10.3390/electronics8020158

5. Park, J.-D., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
doi:10.1109/ACCESS.2019.2923330

6. Ai-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 band," Microw. Opt. Technol. Lett., Vol. 56, 1323-1327, Jun. 2014.
doi:10.1002/mop.28316

7. Li, M.-Y., Y. L. Ban, Z. Q Xu, G. Wu, C. Sim, K. Kang, and Z. F. Yu, "Eightport orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3820-3830, Sep. 2016.
doi:10.1109/TAP.2016.2583501

8. Li, M.-Y., Z.-Q. Xu, Y.-L. Ban, C.-Y.-D. Sim, and Z.-F. Yu, "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone," IET Microw., Antennas Propag., Vol. 11, 1810-1816, Dec. 2017.
doi:10.1049/iet-map.2017.0230

9. Li, M.-Y., Y. L. Ban, Z. Q. Xu, J. Guo, and Z. F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, Jan. 2018.
doi:10.1109/ACCESS.2017.2781705

10. Wong, K.-L., C.-Y. Tsai, and J.-Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1765-1778, Apr. 2017.
doi:10.1109/TAP.2017.2670534

11. Wong, K. L., B. W. Lin, and W. Y. Li, "Dual-band dual inverted F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone," Microw. Opt. Technol. Lett., Vol. 59, 2715-2721, Nov. 2017.

12. Xu, H., H. Zhou, S. Gao, H. Wang, and Y. Cheng, "Multimode decoupling technique with independent tuning characteristic for mobile terminals," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6739-6751, Dec. 2017.
doi:10.1109/TAP.2017.2754445

13. Ren, Z. and A. Zhao, "Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications," IEEE Access, Vol. 7, 82288-82296, 2019.
doi:10.1109/ACCESS.2019.2923666

14. Wong, K.-L., J.-Y. Lu, L.-Y. Chen, W.-Y. Li, and Y.-L. Ban, "8-antenna and 16-antenna array using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microw. Opt. Technol. Lett., Vol. 58, 174-181, Jan. 2016.
doi:10.1002/mop.29527

15. Guo, J. L., L. Cui, C. Li, and B. H. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7412-7417, Dec. 2018.
doi:10.1109/TAP.2018.2872130

16. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "Metal-frame-integrated eight-element multiple-input multiple-output antenna array in the long term evolution bands 41/42/43 for fifth generation smartphones," Int. J. RF Microw. Comput. --- Aided Eng., Vol. 29, No. 1, Jan. 2019, Art. No. e21495.

17. Zhao, A. and Z. Ren, "Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals," Microw. Opt. Technol. Lett., Vol. 61, 20-27, Jan. 2019.
doi:10.1002/mop.31515

18. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 152-156, Jan. 2019.
doi:10.1109/LAWP.2018.2883428

19. Sun, L. B., H. Feng, Y. Li, and Z. Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6364-6369, Nov. 2018.
doi:10.1109/TAP.2018.2864674

20. Hassan, N. and X. Fernando, "Massive MIMO wireless networks: An overview," Electronics, Vol. 6, 63, 2017.
doi:10.3390/electronics6030063

21. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones," IEEE Access, Vol. 6, 28041-28053, 2018.
doi:10.1109/ACCESS.2018.2838337

22. Roy, S., S. Ghosh, and U. Chakarborty, "Compact dual wide-band four/eight elements MIMO antenna for WLAN applications," International Journal of RF and Microwave Computer-Aided Engineering, e21749, 2019.
doi:10.1002/mmce.21749

23. Qin, Z., W. Geyi, M. Zhang, and J. Wang, "Printed eight-element MIMO system for compact and thin 5G mobile handset," Electronics Letters, Vol. 52, No. 6, 416-418, 2016.
doi:10.1049/el.2015.3960

24. Li, Y. and G. Yang, "Dual-mode and triple-band 10-antenna handset array and its multiple-input multiple-output performance evaluation in 5G," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21538, 2019.
doi:10.1002/mmce.21530

25. Li, J., X. Zhang, Z. Wang, X. Chen, J. Chen, Y. Li, and A. Zhang, "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
doi:10.1109/ACCESS.2019.2908969

26. Zou, H., Y. X. Li, C.-Y.-D. Sim, and G. L. Yang, "Design of 8 × 8 dual-band MIMO antenna array for 5G smartphone applications," Int. J. RF Microw. Comput. --- Aided Eng., Vol. 28, Nov. 2018, Art. No. e21420.

27. Li, Y. X., C.-Y.-D. Sim, Y. Luo, and G. L. Yang, "12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
doi:10.1109/ACCESS.2017.2763161

28. Chaudhari, A. A., V. Jadhav, S. U. Kharche, and R. K. Gupta, "Compact dual-band MIMO antenna with high isolation for 3/4G, Wi-Fi, bluetooth, Wi-MAX and WLAN applications," Progress In Electromagnetic Research Symposium (PIERS), 112-115, Aug. 8-11, 2016.

29. Ran, X., J. Wei, and Z. Yu, "Design of a dual-polarization dual-band MIMO antenna for wireless applications," International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA 2016), 2016.

30. Yang, L., H. Xu, J. Fang, and T. Li, "Four-element dual-band MIMO antenna system for mobile phones," Progress In Electromagnetics Research, Vol. 60, 47-56, 2015.

31. Jan, M. A., D. N. Aloi, and M. S. Sharawi, "A 2 × 1 compact dual band MIMO antenna system for wireless handheld terminals," IEEE Radio and Wireless Symposium, 23-26, 2012.

32. Yang, L., J. Fang, and T. Li, "Compact dual-band MIMO antenna system for mobile handset application," IEICE Transactions on Communications, Vol. 98, 2463-2469, 2015.
doi:10.1587/transcom.E98.B.2463

33. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, 2016.

34. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-to-CSRR coupling for portable UWB applications," Sensors, Vol. 17, 2174, 2017.
doi:10.3390/s17102174

35. Naji, D. K., "Design of a compact orthogonal broadband printed MIMO antennas for 5-GHz ISM band operation," Progress In Electromagnetics Research B, Vol. 64, 47-62, 2015.
doi:10.2528/PIERB15092104

36. Chae, S. H., S.-K. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna ," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 2007.


© Copyright 2010 EMW Publishing. All Rights Reserved