PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 102 > pp. 47-62

COMPRESSED SENSING DOA ESTIMATION IN THE PRESENCE OF UNKNOWN NOISE

By A. A. Salama, M. O. Ahmad, and M. N. S. Swamy

Full Article PDF (445 KB)

Abstract:
A new compressive sensing-based direction of arrival (DOA) estimation technique for source signal detection in the presence of unknown noise, based on the generalized correlation decomposition (GCD) algorithm, is presented. The proposed algorithm does not depend on the singular value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA estimation can be done without an a priori knowledge of the number of sources. The proposed algorithm can estimate more sources than the number of physical sensors used without any constraints or assumptions about the nature of the signal sources. It can estimate coherent source signals as well as closely-spaced sources using a small number of snapshots.

Citation:
A. A. Salama, M. O. Ahmad, and M. N. S. Swamy, "Compressed Sensing DOA Estimation in the Presence of Unknown Noise," Progress In Electromagnetics Research C, Vol. 102, 47-62, 2020.
doi:10.2528/PIERC20031204
http://www.jpier.org/pierc/pier.php?paper=20031204

References:
1. Shen, Q., W. Liu, W. Cui, and S. Wu, "Underdetermined doa estimation under the compressive sensing framework: A review," IEEE Access, Vol. 4, 8865-8878, 2016.

2. Babur, G., G. O. Manokhin, A. A. Geltser, and A. A. Shibelgut, "Low-cost digital beamforming on receive in phased array radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 3, 1355-1364, 2017.

3. Wang, V. T. and M. P. Hayes, "Synthetic aperture sonar track registration using SIFT image correspondences," IEEE Journal of Oceanic Engineering, Vol. 42, No. 4, 901-913, 2017.

4. Grzegorowski, M., "Massively parallel feature extraction framework application in predicting dangerous seismic events," 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), 225-229, IEEE, 2016.

5. Moore, A. H., C. Evers, P. A. Naylor, A. H. Moore, C. Evers, and P. A. Naylor, "Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors," IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), Vol. 25, No. 1, 178-192, 2017.

6. Chen, X., X., D. W. K. Ng, W. Gerstacker, and H.-H. Chen, "A survey on multiple-antenna techniques for physical layer security," IEEE Communications Surveys & Tutorials, Vol. 19, No. 2, 1027-1053, 2017.

7. Van Trees, H. L., Detection, Estimation, and Modulation Theory, Optimum Array Processing, John Wiley & Sons, 2004.

8. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.

9. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.

10. Fan, X., L. Pang, P. Shi, G. Li, and X. Zhang, "Application of bee evolutionary genetic algorithm to maximum likelihood direction-of-arrival estimation," Mathematical Problems in Engineering, Vol. 2019, No. 12, 1-11, 2019.

11. Baktash, E., M. Karimi, and X.Wang, "Maximum-likelihood direction finding under elliptical noise using the em algorithm," IEEE Communications Letters, Vol. 23, No. 6, 1041-1044, 2019.

12. Pillai, S. U., Y. Bar-Ness, and F. Haber, "A new approach to array geometry for improved spatial spectrum estimation," Proceedings of the IEEE, Vol. 73, No. 10, 1522-1524, 1985.

13. Pillai, S. and F. Haber, "Statistical analysis of a high resolution spatial spectrum estimator utilizing an augmented covariance matrix," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 35, No. 11, 1517-1523, 1987.

14. Moffet, A., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, 1968.

15. Ma, W.-K., T.-H. Hsieh, and C.-Y. Chi, "DOA estimation of quasi-stationary signals via Khatri-Rao subspace," 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2165-2168, IEEE, 2009.

16. Ma, W.-K., T.-H. Hsieh, and C.-Y. Chi, "DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach," IEEE Transactions on Signal Processing, Vol. 58, No. 4, 2168-2180, 2010.

17. Zhang, Y. D., M. G. Amin, and B. Himed, "Sparsity-based DOA estimation using co-prime arrays," 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3967-3971, IEEE, 2013.

18. Adhikari, K., J. R. Buck, and K. E. Wage, "Beamforming with extended co-prime sensor arrays," 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4183-4186, IEEE, 2013.

19. Shen, Q., W. Liu, W. Cui, S. Wu, Y. D. Zhang, and M. G. Amin, "Low-complexity direction-of-arrival estimation based on wideband co-prime arrays," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 23, No. 9, 1445-1456, 2015.

20. Pal, P. and P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, 2010.

21. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 5, 720-741, 1989.

22. Stoica, P. and A. Nehorai, "Performance study of conditional and unconditional direction-of-arrival estimation," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38, No. 10, 1783-1795, 1990.

23. Jaffer, A. G., "Maximum likelihood direction finding of stochastic sources: A separable solution," 1988 International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2893-2896, IEEE, 1988.

24. Zheng, Y., L. Liu, and X. Yang, "Spice-ml algorithm for direction-of-arrival estimation," Sensors, Vol. 20, No. 1, 119, 2020.

25. Yang, B., C. Wang, and D. Wang, "Direction-of-arrival estimation of strictly noncircular signal by maximum likelihood based on moving array," IEEE Communications Letters, Vol. 23, No. 6, 1045-1049, 2019.

26. Filippini, F., F. Colone, and A. De Maio, "Threshold region performance of multicarrier maximum likelihood direction of arrival estimator," IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 6, 3517-3530, 2019.

27. Viberg, M., P. Stoica, and B. Ottersten, "Array processing in correlated noise fields based on instrumental variables and subspace fitting," IEEE Transactions on Signal Processing, Vol. 43, No. 5, 1187-1199, 1995.

28. Wu, Q. and K. M. Wong, "UN-MUSIC and UN-CLE: An application of generalized correlation analysis to the estimation of the direction of arrival of signals in unknown correlated noise," IEEETransactions on Signal Processing, Vol. 42, No. 9, 2331-2343, 1994.

29. Li, T. and A. Nehorai, "Maximum likelihood direction finding in spatially colored noise fields using sparse sensor arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 3, 1048-1062, 2011.

30. Bhandary, M., "Estimation of covariance matrix in signal processing when the noise covariance matrix is arbitrary ," Journal of Modern Applied Statistical Methods, Vol. 7, No. 1, 16, 2008.

31. Pan, M., G. Zhang, and Z. Hu, "Covariance difference matrix-based sparse bayesian learning for off-grid DOA estimation with colored noise," 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Vol. 1, 1-4, IEEE, 2019.

32. Wen, F., J. Shi, and Z. Zhang, "Direction finding for bistatic mimo radar with unknown spatially colored noise," Circuits, Systems, and Signal Processing, 1-13, 2019.

33. Yao, Y., T. N. Guo, Z. Chen, and C. Fu, "A fast multi-source sound doa estimator considering colored noise in circular array," IEEE Sensors Journal, Vol. 19, No. 16, 6914-6926, 2019.

34. Zhang, Y., G. Zhang, and H. Leung, "Atomic norm minimization methods for continuous doa estimation in colored noise ," 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-5, IEEE, 2019.

35. Sui, J., F. Ye, X. Wang, and F. Wen, "Fast parafac algorithm for target localization in bistatic mimo radar in the co-existence of unknown mutual coupling and spatially colored noise," IEEE Access, Vol. 7, 185720-185729, 2019.

36. Nagesha, V. and S. Kay, "Maximum likelihood estimation for array processing in colored noise," IEEE Transactions on Signal Processing, Vol. 44, No. 2, 169-180, 1996.

37. Liao, B., S.-C. Chan, L. Huang, and C. Guo, "Iterative methods for subspace and DOA estimation in nonuniform noise," IEEE Transactions on Signal Processing, Vol. 64, No. 12, 3008-3020, 2016.

38. Vorobyov, S., et al., "Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays," IEEE Transactions on Signal Processing, Vol. 53, No. 1, 34-43, 2005.

39. Chen, Z., G. Gokeda, and Y. Yu, Introduction to Direction-of-arrival Estimation, Artech House, 2010.

40. Godara, L. C., "Limitations and capabilities of directions-of-arrival estimation techniques using an array of antennas: A mobile communications perspective," IEEE International Symposium on Phased Array Systems and Technology, 327-333, IEEE, 1996.

41. Gorodnitsky, I. F. and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm ," IEEE Transactions on Signal Processing, Vol. 45, No. 3, 600-616, 1997.

42. Fuchs, J.-J., "Linear programming in spectral estimation: Application to array processing," 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 6, 3161-3164, IEEE, 1996.

43. Fuchs, J.-J., "On the application of the global matched filter to DOA estimation with uniform circular arrays," IEEE Transactions on Signal Processing, Vol. 49, No. 4, 702-709, 2001.

44. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Transactions on Signal Processing, Vol. 53, No. 8, 3010-3022, 2005.

45. Salama, A. A., M. O. Ahmad, and M. Swamy, "Underdetermined DOA estimation using MVDR-weighted LASSO," Sensors, Vol. 16, No. 9, 1549, 2016.

46. Liu, S. and G. Trenkler, "Hadamard, Khatri-Rao, Kronecker and other matrix products," Int. J. Inform. Syst. Sci., Vol. 4, No. 1, 160-177, 2008.

47. Hyder, M. and K. Mahata, "An approximate 0 norm minimization algorithm for compressed sensing," 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3365-3368, IEEE, 2009.

48. Berger, C. R., J. Areta, K. Pattipati, and P. Willett, "Compressed sensing --- A look beyond linear programming," 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3857-3860, IEEE, 2008.

49. Mancera, L. and J. Portilla, "l0-norm-based sparse representation through alternate projections," ICIP, Vol. 2092, Citeseer, 2006.

50. Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten, "Fast sparse representation based on smoothed l0 norm," Independent Component Analysis and Signal Separation, 389-396, Springer, 2007.

51. Candes, E. J., "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, Vol. 346, No. 9, 589-592, 2008.

52. Baraniuk, R., M. Davenport, R. DeVore, and M. Wakin, "A simple proof of the restricted isometry property for random matrices," Constructive Approximation, Vol. 28, No. 3, 253-263, 2008.

53. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.

54. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.

55. Candes, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies," IEEE Transactions on Information Theory, Vol. 52, No. 12, 5406-5425, 2006.

56. Xenaki, A., P. Gerstoft, and K. Mosegaard, "Compressive beamforming," The Journal of the Acoustical Society of America, Vol. 136, No. 1, 260-271, 2014.

57. Morozov, V. A., "On the solution of functional equations by the method of regularization," Soviet Math. Dokl., Vol. 7, 414-417, 1966.

58. Karl, W. C., "Regularization in image restoration and reconstruction," Handbook of Image and Video Processing, 141-160, 2000.

59. Tibshirani, R., "Regression shrinkage and selection via the lass," Journal of the Royal Statistical Society. Series B (Methodological), 267-288, 1996.

60. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Journal on Scientific Computing, Vol. 20, No. 1, 33-61, 1998.

61. Yin, J. and T. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4489-4493, 2011.

62. Hansen, P. C. and D. P. O’Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1487-150, 1993.

63. Hansen, P. C., T. K. Jensen, and G. Rodriguez, "An adaptive pruning algorithm for the discrete L-curve criterion," Journal of Computational and Applied Mathematics, Vol. 198, No. 2, 483-492, 2007.

64. Grant, M. and S. Boyd, "CVX: Matlab software for disciplined convex programming, version 2.1,", http://cvxr.com/cvx, Mar. 2014.

65. Grant, M. and S. Boyd, "Graph implementations for nonsmooth convex programs," Recent Advances in Learning and Control (V. Blondel, S. Boyd, and H. Kimura, eds.), Lecture Notes in Control and Information Sciences, 95-110, Springer-Verlag Limited, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved