Vol. 114
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-11
Multiple-Input Multiple-Output Antenna for Sub-Six GHz 5G Applications Using Coupled Folded Antenna with Defective Ground Surface
By
Progress In Electromagnetics Research C, Vol. 114, 13-29, 2021
Abstract
A 6-element MIMO antenna system is introduced in this paper for N77, N78, and N79 (5G) communication bands. The proposed antenna element is composed of a four-section coupled line folded antenna. The performance of this antenna element is improved by using a partial ground plane combined with the DGS between the different elements of the MIMO antenna. The separated single antenna in this case has a reflection coefficient less than -10 dB over the frequency band from 3 GHz to 5 GHz. For the complete MIMO configuration, the reflection coefficientis less than -7 dB over the same frequency band for all the antenna elements. On the other hand, the isolation between antenna elements in the MIMO configuration is greater than 15 dB. The values of the MIMO parameters are calculated. These parameters include the Envelope Correlation Coefficient between the different elements (ECC), Diversity gain (DG), Total Active Reflection Coefficient (TARC), Channel Capacity Loss (CCL), and Mean Effective Gain (MEG). Good results are obtained for the MIMO parameters where ECC < 0.006, DG = 10, TARC < -7, CLL < 0.6, and -3 < MEG < -8. These performance parameters of the proposed MIMO system indicate that this antenna is suitable for 5G applications. The effect of the human hand on the S-parameter is also investigated. The proposed antenna is fabricated and measured to verify the simulation results.
Citation
Alaa M. Hediya, Ahmed Attiya, and Walid Saber El-Deeb, "Multiple-Input Multiple-Output Antenna for Sub-Six GHz 5G Applications Using Coupled Folded Antenna with Defective Ground Surface," Progress In Electromagnetics Research C, Vol. 114, 13-29, 2021.
doi:10.2528/PIERC21050304
References

1. Sun, L., Y. Li, Z. Zhang, and Z. Feng, "Wideband 5G MIMO antenna with integrated orthogonalmode dual-antenna pairs for metal-rimmed smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2494-2503, 2019.
doi:10.1109/TAP.2019.2948707

2. Liu, H. Y. and C. J. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 74-78, 2019.

3. Tu, D. T. T., N. T. B. Phuong, P. D. Son, and V. Van Yem, "Improving characteristics of 28/38 GHz MIMO antenna for 5G applications by using double-side EBG structure," Journal of Communications, Vol. 14, No. 1, 1-8, 2019.
doi:10.12720/jcm.14.1.1-8

4. Garg, P. and P. Jain, "Isolation improvement of MIMO antenna using a novel flower-shaped metamaterial absorber at 5.5 GHz WiMAX band," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 4, 675-679, 2019.
doi:10.1109/TCSII.2019.2925148

5. Khade, S. S. and S. L. Badjate, "Square shape MIMO antenna with defected ground structure," 4th International Conference on Recent Advances in Information Technology (RAIT), 1-5, 2018.

6. Hu, W., X. Liu, S. Gao, L. Wen, Q. Luo, P. Fei, Y. Yin, and Y. Liu, "Compact wideband folded dipole antenna with multi-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 6789-6799, Nov. 2019.
doi:10.1109/TAP.2019.2925188

7. Banerjee, J., A. Karmakar, R. Ghatak, and D. R. Poddar, "Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal Defected Ground Structure (DGS) for high isolation and triple band-notch characteristic," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 15, 1550-1565, 2017.
doi:10.1080/09205071.2017.1354727

8. Rao, T. V., A. Sudhakar, and K. P. Raju, "Novel technique of MIMO antenna design for UWB applications using defective ground structures," Journal of Scientific & Industrial Applications, Vol. 77, No. 1, 66-69, 2018.

10. Sheeba, I. R., B. Velan, and M. Sugadev, "Design and analysis of energy band gap and defective ground structure on array of patch antenna using meta material," 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, 2020.

11. Bhattacharjee, S., M. Mitra, and S. R. Bhadra Chaudhuri, "An effective SAR reduction technique of a compact meander line antenna for wearable applications," Progress In Electromagnetics Research, Vol. 55, 143-152, 2017.
doi:10.2528/PIERM16121501

12. Hota, S., S. Baudha, B. B. Mangaraj, and M. V. Yadav, "A compact, ultrawideband planar antenna with modified circular patch and a defective ground plane for multiple applications," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2088-2097, 2019.
doi:10.1002/mop.31867

13. Parchin, N. O., H. J. Basherlou, Y. I. Al-Yasir, A. M. Abdulkhaleq, P. S. ExcellR. A. Abd-Alhameed, and , "Eight-port MIMO antenna system for 2.6 GHz LTE cellular communications," Progress In Electromagnetics Research, Vol. 99, 49-59, 2020.
doi:10.2528/PIERC19111704

14. Saleem, R., M. Bilal, H. T. Chattha, S. U. Rehman, A. Mushtaq, and M. F. Shafique, "An FSS based multiband MIMO system incorporating 3D antennas for WLAN/WiMAX/5G cellular and 5G Wi-Fi applications," IEEE Access, Vol. 7, 144732-144740, 2019.
doi:10.1109/ACCESS.2019.2945810

15. Molins-Benlliure, J., M. Cabedo-Fabrés, E. Antonino-Daviu, and M. Ferrando-Bataller, "Effect of the ground plane in UHF chip antenna efficiency," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, Mar. 2020.

16. Parchin, N. O., H. J. Basherlou, Y. I. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, and P. S. Excell, "Eight-port MIMO antenna system for 2.6 GHz LTE cellular communications," Progress In Electromagnetics Research, Vol. 99, 49-59, 2020.
doi:10.2528/PIERC19111704

17. Saleem, R., M. Bilal, H. T. Chattha, S. U. Rehman, A. Mushtaq, and M. F. Shafique, "An FSS based multiband MIMO system incorporating 3D antennas for WLAN/WiMAX/5G cellular and 5G Wi-Fi applications," IEEE Access, Vol. 7, 144732-144740, 2019.
doi:10.1109/ACCESS.2019.2945810

18. Khalid, M., S. I. Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter-wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

19. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
doi:10.1109/ACCESS.2019.2934892

20. Saxena, G., P. Jain, and Y. K. Awasthi, "High isolation EBG based MIMO antenna for X-band applications," 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE, 2019.

21. Zhao, A. and Z. Ren, "Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals," IEEE Access, Vol. 7, 93761-93771, 2019.
doi:10.1109/ACCESS.2019.2913466

22. Thakur, E., N. Jaglan, and S. D. Gupta, "Design of compact triple band-notched UWB MIMO antenna with TVC-EBG structure," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 11, 1601-1615, 2020.
doi:10.1080/09205071.2020.1775136