Vol. 114
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-19
A Novel Miniaturized L-Band Filter with Great Stopband Characteristics Using Interdigitated Coupled Lines CRLH-TL Structure
By
Progress In Electromagnetics Research C, Vol. 114, 57-67, 2021
Abstract
This paper proposes a novel bandpass filter for L-band based on CRLH TL, which is mainly formed by coupling a high-pass characteristic module with a low-pass characteristic module in a cascade. The high-pass module consists of an interdigitated coupled line and a grounding via, owning to its singular characteristics, which the miniaturization is realized. The low-pass module is composed of a C-type resonator with high-low impedance lines, which can realize great sideband attenuation characteristics. To further improve its out-of-band rejection characteristics, a complementary split-ring resonator (CSRR) defective ground structure with single-pole attenuation characteristics is loaded, and a transmission zero is introduced at 2.5f0 out-of-band. The test results are in great agreement with the simulation ones, and the dimensions are only 0.20λg*0.22λg. Compared with other similar types, the filter proposed in this paper has miniaturization, great passband selection characteristics, stopband characteristics, and the advantage of low insertion loss.
Citation
Peng Wang, Kaiyue Duan, Minquan Li, Man Zhang, and Baokun Jin, "A Novel Miniaturized L-Band Filter with Great Stopband Characteristics Using Interdigitated Coupled Lines CRLH-TL Structure," Progress In Electromagnetics Research C, Vol. 114, 57-67, 2021.
doi:10.2528/PIERC21051105
References

1. Wang, C.-X., F. Haider, X. Gao, et al. "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6736752

2. Chu, C. and X. Liao, "Modeling of an 8–12 GHz receiver front-end based on an in-line MEMS frequency discriminator," Solid State Electronics, Vol. 144, No. 7, 54-59, 2018.
doi:10.1016/j.sse.2018.03.002

3. Hong, J. S., "Microstrip filters for RF/microwave applications," IEEE Microwave Magazine, Vol. 3, No. 3, 62-65, 2002.

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Physics-Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Pendry, J., B. Holden, et al. "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory & Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

6. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4178, 2000.
doi:10.1103/PhysRevLett.84.4184

7. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory & Techniques, Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

8. Keshavarz, S. and N. Nozhat, "“Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2016.

9. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigta loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2021.
doi:10.2528/PIERC20112307

10. Keshavarz, S., A. Abdipour, A. Mohammadi, et al. "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU --- International Journal of Electronics and Communications, Vol. 111, 152913-152913, 2019.
doi:10.1016/j.aeue.2019.152913

11. Gong, J. Q. and Q. X. Chu, "Miniaturized microstrip bandpass filter using coupled SCRLH zerothorder resonators," Microwave & Optical Technology Letters, Vol. 51, No. 12, 2985-2989, 2009.
doi:10.1002/mop.24808

12. Sanz, V., A. Belenguer, L. Martinez, et al. "Balanced right/left-handed coplanar waveguide with stub-loaded split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 65, No. 13, 193-196, 2014.
doi:10.1109/LAWP.2014.2301017

13. Chu, Q.-X., J.-Q. Huang, et al. "Compact ultra-wideband filter with dual notched bands based on complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 52, No. 11, 2509-2512, 2010.
doi:10.1002/mop.25554

14. Choudhary, D. K. and R. K. Chaudhary, "Vialess wideband bandpass filter using CRLH transmission line with semi-circular stub," International Conference on Microwave and Photonics (ICMAP), 1-2, 2015.

15. Zhang, H., W. Kang, and W. Wu, "Miniaturized dual-band differential filter based on CSRR-loaded dual-mode SIW cavity," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 897-899, 2018.
doi:10.1109/LMWC.2018.2867082

16. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, No. 10, 1067-1070, 2002.

17. Wu, Y. M., "Design of phase-shifter using composite right-left handed transmission line," Journal of Antennas, Vol. 06, No. 4, 61-69, 2017.
doi:10.12677/JA.2017.64008

18. Park, J.-I., et al. "Modeling of a photonic bandgap and its application for the low-pass filter design," Asia Pacific Microwave Conference, Vol. 2, No. 10, 331-334, 1999.

19. Ahn, D., J. S. Park, C. S. Kim, et al. "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory & Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

20. Gómez-García, R., J. Munoz-Ferreras, D. Psychogiou, et al. "Balanced symmetrical quasireflectionless single-and dual-band bandpass planar filters," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 9, 798-800, 2018.
doi:10.1109/LMWC.2018.2856400

21. Jones, T. R. and M. Daneshmand, "Miniaturized slotted bandpass filter design using a ridged half-mode substrate integrated waveguide," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 5, 334-336, 2016.
doi:10.1109/LMWC.2016.2549000

22. Luo, C., et al. "Quasi-reflectionless microstrip bandpass filters using bandstop filter for out-of-band improvement," IEEE Transactions on Circuits and Systems II, Vol. 1109, No. 10, 1849-1853, 2019.

23. Psychogiou, D. and R. Gómez-García, "Multi-mode-cavity-resonator-based bandpass filters with multiple levels of transfer-function adaptivity," IEEE Access, Vol. 1109, No. 10, 24759-24765, 2019.
doi:10.1109/ACCESS.2019.2900059

24. Chen, C., "A coupled-line coupling structure for the design of quasi-elliptic bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1921-1925, 2018.
doi:10.1109/TMTT.2017.2783378

25. Zhang, M., M. Li, K. Duan, et al. "A novel miniaturized bandpass filter basing on stepped-impedance resonator," Progress In Electromagnetics Research Letters, Vol. 97, 77-85, 2021.
doi:10.2528/PIERL21021003

26. Li, M. and K. D. Xu, "Miniaturized bandpass filter using E-stub loaded CRLH-TL resonator," 17th International Symposium on Communications and Information Technologies (ISCIT), 1-3, 2017.

27. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [Education Column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202, 2014.
doi:10.1109/MAP.2013.6735515

28. Ca Loz, C. and T. Itoh, "Transmission line approach of Left-Handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas & Propag., Vol. 52, No. 5, 1159-1166, 2004.
doi:10.1109/TAP.2004.827249