Vol. 123
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-26
Improved Higher-Order Sliding Mode Controller for Model Predictive Current Control of PMSM
By
Progress In Electromagnetics Research C, Vol. 123, 117-133, 2022
Abstract
To improve the control accuracy of the model prediction current (MPC) loop of a permanent magnet synchronous motor (PMSM), a new high-order super-twisting sliding-mode controller combined with a sliding-mode disturbance observer is proposed as a speed control strategy. Firstly, the linear term is added to the scaling term based on the original algorithm, which enhances robustness while weakening jitter. In addition, load perturbations and parameter uptake in the system are considered. The perturbation observation error is introduced into the switching gain function, and an improved sliding-mode disturbance observer is designed as feedforward compensation. The disturbance immunity of the system is effectively enhanced. Simulated and experimental results verify the correctness and effectiveness of this control strategy.
Citation
Qianghui Xiao, Zihao Liu, Yang Zhang, Zhe Li, Bing Luo, and Tingting Wang, "Improved Higher-Order Sliding Mode Controller for Model Predictive Current Control of PMSM," Progress In Electromagnetics Research C, Vol. 123, 117-133, 2022.
doi:10.2528/PIERC22060211
References

1. Tong, W., S. Dai, S. Wu, and R. Tang, "Performance comparison between an amorphous metal PMSM and a silicon steel PMSM," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, Art No. 8102705, Jun. 2019, doi: 10.1109/TMAG.2019.2900531.

2. Ding, X., J. Cheng, Z. Zhao, and P. Chi Kwong Luk, "A high-precision and high-efficiency PMSM driver based on power amplifiers and RTSPSs," IEEE Transactions on Power Electronics, Vol. 36, No. 9, 10470-10480, Sept. 2021, doi: 10.1109/TPEL.2021.3063312.
doi:10.1109/TPEL.2021.3063312

3. Zhang, Y. and H. Yang, "Model predictive torque control of induction motor drives with optimal duty cycle control," IEEE Transactions on Power Electronics, Vol. 29, No. 12, 6593-6603, Dec. 2014, doi: 10.1109/TPEL.2014.2302838.
doi:10.1109/TPEL.2014.2302838

4. Song, Z., Y. Tian, W. Chen, Z. Zou, and Z. Chen, "Predictive duty cycle control of three-phase active-front-end rectifiers," IEEE Transactions on Power Electronics, Vol. 31, No. 1, 698-710, Jan. 2016, doi: 10.1109/TPEL.2015.2398872.
doi:10.1109/TPEL.2015.2398872

5. Yan, Y., S. Wang, C. Xia, H. Wang, and T. Shi, "Hybrid control set-model predictive control for field-oriented control of VSI-PMSM," IEEE Transactions on Energy Conversion, Vol. 31, No. 4, 1622-1633, Dec. 2016, doi: 10.1109/TEC.2016.2598154.
doi:10.1109/TEC.2016.2598154

6. Sheng, L., W. Li, Y. Wang, M. Fan, and X. Yang, "Sensorless control of a shearer short-range cutting interior permanent magnet synchronous motor based on a new sliding mode observer," IEEE Access, Vol. 5, 18439-18450, 2017, doi: 10.1109/ACCESS.2017.2734699.
doi:10.1109/ACCESS.2017.2734699

7. Ji, Z. C. and J. Chang, "Speed-sensorless control of PMSM based on an improved equivalent input disturbance estimator," Chin. J. Sci. Instrum., Vol. 30, No. 10, 2139-2143, Oct. 2009.

8. Zhou, X. Y., L. L. Li, and L. B. Zhao, "Nonsingular terminal sliding mode control for the ESO-based stabilized platform," Chin. J. Sci. Instrum., Vol. 39, No. 5, 161-169, May 2018.

9. Cao, Z. and F. Meng, "Adaptive observer-based inverse optimal control of a class of second-order Euler-Lagrange systems," 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), 300-304, 2021, doi: 10.1109/CCIS53392.2021.9754605.

10. Ma, Z. and S. M. Jiao, "Research on the attitude control of quad-rotor UAV based on active disturbance rejection control," 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 45-49, 2017, doi: 10.1109/CCSSE.2017.8087892.
doi:10.1109/CCSSE.2017.8087892

11. Wu, J., et al. "A ditherless bias control technique for IQ Mach-Zehnder modulator based on partial derivative and neural network," 2021 Asia Communications and Photonics Conference (ACP), 1-3, 2021.

12. Zhang, Q. and S. Zhang, "Sliding mode control based on disturbance compensation reaching law for pressure difference in cement mill," 2021 China Automation Congress (CAC), 771-775, 2021, doi: 10.1109/CAC53003.2021.9727546.
doi:10.1109/CAC53003.2021.9727546

13. Anuar, H. A., F. Plestan, A. Chriette, and O. Kermorgant, "Sliding mode control with adaptive gain of quadrotor with rigid manipulator," 2021 20th International Conference on Advanced Robotics (ICAR), 547-554, 2021, doi: 10.1109/ICAR53236.2021.9659433.
doi:10.1109/ICAR53236.2021.9659433

14. Ji, P., F. Ma, and F. Min, "Terminal traction control of teleoperation manipulator with random jitter disturbance based on active disturbance rejection sliding mode control," IEEE Access, Vol. 8, 220246-220262, 2020, doi: 10.1109/ACCESS.2020.3043247.
doi:10.1109/ACCESS.2020.3043247

15. Levant, A., "Principles of 2-sliding mode design," Automatica, Vol. 43, No. 4, 576-586, 2007.
doi:10.1016/j.automatica.2006.10.008

16. Zhang, L., J. Bai, and J. Wu, "SPMSM sliding mode control based on the new super twisting algorithm," Complexity, Vol. 2021, Article ID 2886789, 9 pages, 2021.

17. Hou, Q., S. Ding, and X. Yu, "Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer," IEEE Transactions on Energy Conversion, Vol. 36, No. 4, 2591-2599, Dec. 2021, doi: 10.1109/TEC.2020.2985054.
doi:10.1109/TEC.2020.2985054

18. Qu, L., W. Qiao, and L. Qu, "An extended-state-observer-based sliding-mode speed control for permanent-magnet synchronous motors," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 2, 1605-1613, Apr. 2021, doi: 10.1109/JESTPE.2020.2990442.
doi:10.1109/JESTPE.2020.2990442

19. Qin, J., Q. Ma, H. Gao, and W. X. Zheng, "Fault-tolerant cooperative tracking control via integral sliding mode control technique," IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 1, 342-351, Feb. 2018, doi: 10.1109/TMECH.2017.2775447.
doi:10.1109/TMECH.2017.2775447

20. Li, Z., S. Zhou, Y. Xiao, and L.Wang, "Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller," IEEE Access, Vol. 7, 44998-45011, 2019, doi: 10.1109/ACCESS.2019.2909308.
doi:10.1109/ACCESS.2019.2909308

21. Hou, Q., S. Ding, X. Yu, and K. Mei, "A super-twisting-like fractional controller for SPMSM drive system," IEEE Transactions on Industrial Electronics, Vol. 69, No. 9, 9376-9384, Sept. 2022, doi: 10.1109/TIE.2021.3116585.
doi:10.1109/TIE.2021.3116585

22. Junejo, A. K., W. Xu, C. Mu, M. M. Ismail, and Y. Liu, "Adaptive speed control of PMSM drive system based a new sliding-mode reaching law," IEEE Transactions on Power Electronics, Vol. 35, No. 11, 12110-12121, Nov. 2020, doi: 10.1109/TPEL.2020.2986893.
doi:10.1109/TPEL.2020.2986893

23. Hou, Q. and S. Ding, "GPIO based super-twisting sliding mode control for PMSM," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 2, 747-751, Feb. 2021, doi: 10.1109/TCSII.2020.3008188.
doi:10.1109/TCSII.2020.3008188

24. Liu, W., S. Chen, and H. Huang, "Adaptive nonsingular fast terminal sliding mode control for permanent magnet synchronous motor based on disturbance observer," IEEE Access, Vol. 7, 153791-153798, 2019, doi: 10.1109/ACCESS.2019.2948945.
doi:10.1109/ACCESS.2019.2948945

25. Li, W., Z. Du, W. Wang, and W. Wu, "Composite fractional order sliding mode control of permanent magnet synchronous motor based on disturbance observer," 2019 Chinese Automation Congress (CAC), 4012-4016, 2019, doi: 10.1109/CAC48633.2019.8996422.
doi:10.1109/CAC48633.2019.8996422

26. Zhang, L., S. Wang, and J. Bai, "Fast-super-twisting sliding mode speed loop control of permanent magnet synchronous motor based on SVM-DTC," IEICE Electronics Express, Vol. 18, 1, 2020.

27. Wang, Y., et al. "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, May 2017, doi: 10.1109/TIE.2017.2652338.
doi:10.1109/TIE.2017.2652338