Vol. 123
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-02
A Compact UWB DRA MIMO Antenna Realizing Band Notch Characteristics and Fractal Inspired Isolation Mechanism
By
Progress In Electromagnetics Research C, Vol. 123, 213-226, 2022
Abstract
In this communication, a new compact UWB dual port multiple-input multiple-output (MIMO) antenna is presented for wireless application. The design utilizes the property of dielectric resonator to achieve a bandwidth that ranges from 3.1 GHz to 18.5 GHz. The design has a compact size of 19×30×0.8 mm3. It consists of two rectangular shape monopole antenna elements with rectangular dielectric resonators sharing a similar ground plane. On the ground plane, a modified Hilbert curve with a meander line parasitic element was introduced to improve isolation between radiating elements which reduces mutual coupling issues. A band notch is achieved at WLAN band (5.09-5.8 GHz) by etching a pair of L-shape slots on each radiator. The gain of the antenna drops significantly at the centre of the notch band which indicates good interference suppression. Results show that the designed antenna provides a wide impedance bandwidth (below -10 dB) throughout the operating band of 3.1-18.5 GHz (142.6%). The antenna also produces nearly -20 dB isolation for the entire operating band. Results show that the simulated characteristics are in good agreement with the measured counterpart.
Citation
Anindita Bhattacharjee, Anirban Karmakar, and Anuradha Saha, "A Compact UWB DRA MIMO Antenna Realizing Band Notch Characteristics and Fractal Inspired Isolation Mechanism," Progress In Electromagnetics Research C, Vol. 123, 213-226, 2022.
doi:10.2528/PIERC22060604
References

1. "Revision of part 15 of the commissions rules regarding ultra-wideband transmission systems first report and order FCC 02.V48," Federal Communications Commission, Tech. Rep., Washington, DC, 2002.
doi:10.1109/TIT.2003.810646

2. Zhengand, L. and N. C. Tse, "Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels," IEEE Transaction of Information Theory, Vol. 49, No. 5, 1073-1096, 2003.
doi:10.1109/TVT.2005.861211

3. Zhou, Q. and H. Dai, "Joint antenna selection and link adaptation for MIMO systems," IEEE Transactions on Vehicular Technology, Vol. 55, No. 1, 243-255, 2006.
doi:10.1109/LAWP.2015.2423318

4. Luo, C., J. Hong, and L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1766-1769, 2015.
doi:10.1109/TAP.2011.2173452

5. Li, J., Q. Chu, and T. Huang, "A compact wideband MIMO antenna with two novel bent slits," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 482-489, 2012.
doi:10.1109/LAWP.2019.2925857

6. Wang, L., et al. "Compact UWB MIMO antenna with high isolation using fence-type decoupling structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1641-1645, 2019.
doi:10.1109/LAWP.2013.2293765

7. Chattha, H. T., M. Nasir, Q. H. Abbasi, Y. Huang, and S. S. AlJa'afreh, "Compact low-profile dual-port single wideband planar inverted-F MIMO antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1673-1675, 2013.
doi:10.1002/mop.31188

8. Das, G., A. Sharma, and R. K. Gangwar, "Triple-band hybrid antenna with integral isolation mechanism for MIMO applications," Microwave Opt. Technology Letter., Vol. 60, No. 6, 1482-1491, 2018.
doi:10.1002/mmce.21486

9. Kumari, T., G. Das, and A. Sharma, "Design approach for dual element hybrid MIMO antenna arrangement for wideband applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, 1-10, 2019.
doi:10.1049/iet-map.2017.0420

10. Das, G., A. Sharma, and R. K. Gangwar, "Wideband self-complementary hybrid ring dielectric resonator antenna for MIMO applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 108-114, 2018.
doi:10.1002/mmce.20884

11. Nasir, J., M. H. Jamaluddin, M. Khalily, M. R. Kamarudin, and I. Ullah, "A reduced size dual port MIMO DRA with high isolation for 4G applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 6, 495-501, 2015.
doi:10.1007/s11277-016-3174-3

12. Nasir, J., M. H. Jamaluddin, M. Khalily, M. R. Kamarudin, and I. Ullah, "Design of an MIMO dielectric resonator antenna for 4G applications," Wireless Personal Communications, Vol. 88, 525-536, 2016.
doi:10.1109/LAWP.2014.2305696

13. Roslan, S. F., M. R. Kamarudin, M. Khalily, and M. H. Jamaluddin, "An MIMO rectangular dielectric resonator antenna for 4G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 321-324, 2014.
doi:10.4028/www.scientific.net/AMM.781.24

14. Selvaraju, R., M. R. Kamarudin, M. Khalily, M. H. Jamaluddin, and J. Nasir, "Dual-port MIMO rectangular dielectric resonator antenna for 4G-LTE application," Applied Mechanics and Materials, Vol. 781, 24-27, 2015.

15. Khan, A. A., R. Khan, S. Aqeel, J. Nasir, and J. Saleem, "Design of a dual-band MIMO dielectric resonator antenna with high port isolation for WiMAX and WLAN applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, No. 2, 1-11, 2017.
doi:10.1080/00207217.2020.1727028

16. Kumar, V., "Rectangular DR-based dual-band CP-MIMO antenna with inverted Z-shaped slot," International Journal of Electronics, Vol. 107, No. 10, 1559-1573, 2020.
doi:10.1109/ACCESS.2020.3012793

17. Sani, M. M., R. Chowdhury, and R. K. Chaudhary, "An ultra-wideband rectangular dielectric resonator antenna with MIMO configuration," IEEE Access, Vol. 8, 139658-139669, 2020.
doi:10.1007/s11277-020-07887-x

18. Yadav, S. K., A. Kaur, and R. Khanna, "Compact rack shaped MIMO dielectric resonator antenna with improved axial ratio for UWB applications," Wireless Personal Communication, Vol. 117, 591-606, 2021.

19. Karmakar, A., "Fractal antennas and arrays: A review and recent developments," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 2, 1-25, 2020.
doi:10.2528/PIERC12052310

20. Karmakar, A., S. Verma, M. Pal, and R. Ghatak, "An ultra wideband monopole antenna with multiple fractal slots with dual band rejection characteristics," Progress In Electromagnetics Research C, Vol. 31, 185-197, 2012.
doi:10.1002/mmce.21829

21. Gautam, A. K., A. Saini, N. Agrawal, and N. Z. Rizvi, "Design of a compact protrudent-shaped ultra-wideband multiple-input multiple-output/diversity antenna with band-rejection capability," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, 1-11, 2019.
doi:10.1049/el:20030495

22. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1109/MAP.2013.6735522

23. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013.

24. Banerjee, J., A. Gorai, and R. Ghatak, "Design and analysis of a compact UWB MIMO antenna incorporating fractal inspired isolation improvement and band rejection structures," International Journal of Electronics and Communications (AEÜ), Vol. 122, 1-9, 2020.
doi:10.1016/j.aeue.2018.06.035

25. Gorai, A., A. Dasgupta, and R. Ghatak, "A compact quasi-self-complementary Dual Band Notched UWB MIMO Antenna with enhanced isolation using Hilbert fractal slot," International Journal of Electronics and Communications, Vol. 94, 36-41, 2018.