Vol. 7

Latest Volume
All Volumes
All Issues
2009-02-20

Electrically Small Antenna Inspired by Spired Split Ring Resonator

By Zhangshan Duan, Shaobo Qu, and Yiwei Hou
Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009
doi:10.2528/PIERL09012005

Abstract

A simple metamaterial resonator structure based efficiency electrically small semi-circular loop antenna (ESSCLA) is proposed. It is demonstrated numerically that capacitive offered by the simple metamaterial resonator structure can counteract inductive impedance of the ESSCLA at the resonance frequency. The overall structures of ESSCLA can be fabricated on one dielectric substrate, and match conjugate to a 50 Ohm coaxial transmission line source without additional matching network. The size of the proposed ESSCLA is ka = 0.6745 by Chu limit. The resonance frequency is 3.2239 GHz, and impedance bandwidth (S11<-10) is from 3.19 GHz to 3.26 GHz about 0.07 GHz, the relative bandwidth is about 2.2%. The measure results accord with the simulation results well. The peak gain is 4.58 dB. The radiation efficiency is 97.81%, the overall efficiency is 96.71% at the resonance frequency. The proposed antenna has advantages of efficiency, high gain, low cost, small size, and light weight and will be applied to wireless communication systems for required small antennas.

Citation


Zhangshan Duan, Shaobo Qu, and Yiwei Hou, "Electrically Small Antenna Inspired by Spired Split Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009.
doi:10.2528/PIERL09012005
http://www.jpier.org/PIERL/pier.php?paper=09012005

References


    1. Wheeler, H. A., "Fundamental limitations of small antennas," IRE Proc., Vol. 35, 1479-1484, 1947.
    doi:10.1109/JRPROC.1947.226199

    2. Chu, L. J., "Physical limitations in omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
    doi:10.1063/1.1715038

    3. Thal, H. L., "New radiation Q limits for spherical wire antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2006.
    doi:10.1109/TAP.2006.882184

    4. Best, S. R., "Low Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 2005.
    doi:10.1109/TAP.2004.842600

    5. Foltz, H. D., J. S. McLean, and G. Crook, "Disk-loaded monopoles with parallel strip elements," IEEE Trans. Antennas Propag., Vol. 46, 1894-1896, 1998.
    doi:10.1109/8.743844

    6. Veselago, V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    7. Ziolkowski, R. W. and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, 2626-2640, 2003.
    doi:10.1109/TAP.2003.817561

    8. Ziolkowski, R. W. and A. D. Kipple, "Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically emall antennas in the presence of nested metamaterial shells," Physical Review E, Vol. 72, 036602, 2005.
    doi:10.1103/PhysRevE.72.036602

    9. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, 2113-2130, 2006.
    doi:10.1109/TAP.2006.877179

    10. Ziolkowski, R. W. and A. Erentok, "At and beyond the chu limit: Passive and active broad bandwidth metamaterial-based efficient electrically small antennas," IET Microw., Antennas Propag., Vol. 1, 116-128, 2007.
    doi:10.1049/iet-map:20050342

    11. Kim, H. Y., J. K. Kim, J. H. Kim, Y. J. Kim, and H. M. Lee, "Design of metamaterial structure based electrically small monopole antenna," 2007 Autumn Microwave & Radio Wave Conference, Vol. 30, 577-580, 2007.

    12. Ghosh, B., S. Ghosh, and A. B. Kakade, "Investigation of gain enhancement of electrically small antennas using double-negative, single-negative, and double-positive materials," Physical Review E, Vol. 78, 026611, 2008.
    doi:10.1103/PhysRevE.78.026611

    13. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, 1644-1653.

    14. Stuart, H. R., "The application of negative permittivity materials and metamaterials in electrically small antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 460-462, 2007.
    doi:10.1109/LAWP.2007.905018

    15. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-706, 2008.
    doi:10.1109/TAP.2008.916949

    16. Li, L.-W., C.-P. Lim, and M.-S. Leong, "Near fields of electrically small thin square and rectangular loop antennas," Progress In Electromagnetics Research, Vol. 31, 181-193, 2001.
    doi:10.2528/PIER00062202

    17. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
    doi:10.2528/PIER08031604

    18. Balanis, C. A., Antenna Theory, 3 Ed., Wiley, New York, 2005.

    19. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, 056625, 2001.
    doi:10.1103/PhysRevE.64.056625

    20. Ziolkowski, R. W., "Reply to "Comments on ‘Application of double negative materials to increase the power radiated by electrically small antennas’ "," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 2006.
    doi:10.1109/TAP.2005.863161

    21. Kildal, P.-S., "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 766, 2006.
    doi:10.1109/TAP.2005.863160