PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 17 > pp. 75-83

PROPAGATION ALONG SINGLE-CRYSTALLINE SILVER FILAMENTS WITH PEARL-CHAIN-LIKE STRUCTURES

By Z. Wu, B.-Q. Zeng, and J. Zhu

Full Article PDF (224 KB)

Abstract:
In this paper, single-crystalline silver filaments with periodic, pearl-chain-like structures are fabricated by electrodeposition without using any templates, surfactants, and additives. Simulations demonstrate that excited surface waves may sustain on silver pearl chains in middle infrared (Mid-IR) range. Based on the propagation features of surface waves on the silver filaments, this structure can be applied for electromagnetic wave transmittance in Mid-IR range. The propagation features of surface waves on the silver filaments indicate the structure application for Mid-IR wave transmittance.

Citation:
Z. Wu, B.-Q. Zeng, and J. Zhu, "Propagation Along Single-Crystalline Silver Filaments with Pearl-Chain-Like Structures," Progress In Electromagnetics Research Letters, Vol. 17, 75-83, 2010.
doi:10.2528/PIERL10061207

References:
1. Howes, M. J. and D. V. Morgan, Microwave Devices: Device Circuit Interactions, Wiley, New York, 1976.

2. Cook, N. P., Microwave Principles and Systems, Prentice-Hall, Englewood Cliffs, NJ, 1986.

3. Chedid, M., I. Belov, and P. Leisner, "Electromagnetic coupling to a wearable application based on coaxial cable architecture," Progress In Electromagnetics Research, Vol. 56, 109-128, 2006.
doi:10.2528/PIER05070101

4. Crozier, K. B., et al., "Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains," Optics Express, Vol. 15, 17482-17493, 2007.
doi:10.1364/OE.15.017482

5. Wei, Q.-H., et al., "Plasmon resonance of finite one-dimensional Au nanoparticle chains," Nano Lett., Vol. 4, 1067-1071, 2004.
doi:10.1021/nl049604h

6. Maier, S. A., et al., "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B, Vol. 65, 193408, 2002.
doi:10.1103/PhysRevB.65.193408

7. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.
doi:10.1126/science.1098999

8. Maier, S. A., et al., "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett., Vol. 97, 176805, 2006.
doi:10.1103/PhysRevLett.97.176805

9. Ji, Y. B., et al., "Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide," Optics Express, Vol. 16, 271-278, 2008.
doi:10.1364/OE.16.000271

10. Kong, F. M., et al., "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

11. Menachem, Z. and M. Mond, "Infrared wave propagation in a helical waveguide with inhomogeneous cross section and application," Progress In Electromagnetics Research, Vol. 61, 159-192, 2006.
doi:10.2528/PIER06020205

12. Kumar, N. and S. P. Ojha, "Photonic crystals as infrared broadband reflectors with different angles of incidence: A comparative study," Progress In Electromagnetics Research, Vol. 80, 431-445, 2008.
doi:10.2528/PIER07120502

13. Wang, M., et al., "Nanostructured copper filaments in electrochemical deposition," Phys. Rev. Lett., Vol. 86, 3827-3830, 2001.
doi:10.1103/PhysRevLett.86.3827

14. Zhong, S., et al., "Formation of nanostructured copper filaments in electrochemical deposition," Phys. Rev. E, Vol. 67, 061601, 2003.
doi:10.1103/PhysRevE.67.061601

15. Wang, Y., et al., "Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling," Phys. Rev. E, Vol. 69, 021607, 2004.
doi:10.1103/PhysRevE.69.021607

16. Wu, Z., et al., "Characterization of periodically nanostructured copper filaments self-organized by electrodeposition," J. Phys.: Condens. Matter, Vol. 18, 5425-5434, 2006.
doi:10.1088/0953-8984/18/23/014

17. Wu, Z., et al., "Electrodeposition of single-crystalline silver pearl chains," Appl. Phys. Lett., Vol. 94, 041120, 2009.
doi:10.1063/1.3072607

18. Doremus, R. H., B. W. Roberts, and D. Turnbull, Growth and Perfection of Crystals, Wiley-VCH, Weinheim, Germany, 1958.

19. Ming, N. B., The Physical Base of Crystal Growth, Shanghai Science Technology Press, Shanghai, 1982.

20. He, R., et al., "Formation of silver dendrites under microwave irradiation," Chem. Phys. Lett., Vol. 369, 454-458, 2003.
doi:10.1016/S0009-2614(02)02036-5

21. Geddes, C. D., "Fractal silver structures for metal-enhanced fluorescence: Applications for ultra-bright surface assays and lab-on-a-chip-based nanotechnologies," Journal of Fluorescence, Vol. 13, 119-122, 2003.
doi:10.1023/A:1022916524083

22. Huang, H., et al., "Tunable TE/TM wave splitter using a gyrotropic slab," Progress In Electromagnetics Research, Vol. 85, 367-380, 2008.
doi:10.2528/PIER08080303

23. Aliakbarian, H., et al., "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

24. Shi, Y. C., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402

25. Zhang, M., et al., "Regular arrays of copper wires formed by template-assisted electrodeposition," Adv. Mater., Vol. 16, 409-413, 2004.
doi:10.1002/adma.200305577

26. Zhang, B., et al., "Creating in-plane metallic-nanowire arrays by corner-mediated electrodeposition," Adv. Mater., Vol. 21, 1-5, 2009.

27. Yang, X.-C., et al., "Preparation and characteristics of large-area and high-filling Ag nanowire arrays in OPAA template," Materials Letters, Vol. 64, 1451-1454, 2010.
doi:10.1016/j.matlet.2010.03.054


© Copyright 2010 EMW Publishing. All Rights Reserved