Vol. 30
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-26
An Investigation of Tradeoff Options for the Improvement of Spurious-Free Dynamic Range in Hbt Transimpedance Distributed Amplifiers
By
Progress In Electromagnetics Research Letters, Vol. 30, 67-79, 2012
Abstract
This work introduces and investigates various methods of improving spurious-free dynamic rage (SFDR) in HBT transimpedance distributed amplifiers by trading off transimpedance gain. The methods are theoretically analyzed in detail with design examples, compared against each other in terms of performance and the best tradeoff is determined. SFDR improvements of up to 9 dB are reported in our design examples.
Citation
Shuchin M. Taher, and James R. Scott, "An Investigation of Tradeoff Options for the Improvement of Spurious-Free Dynamic Range in Hbt Transimpedance Distributed Amplifiers," Progress In Electromagnetics Research Letters, Vol. 30, 67-79, 2012.
doi:10.2528/PIERL11121503
References

1. Huber, D., R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf, A. Neiger, M. Rohner, I. Schnyder, V. Schwarz, and A. Jackel, "InP-InGaAs single HBT technology for photo receiver OEICs at 40 Gb/s and beyond," J. Lightwave Technol., Vol. 18, No. 7, 992-1000, Jul. 2000.
doi:10.1109/50.850745

2. Cohen, E., Y. Betser, B. Sheinman, S. Cohen, S. Sidorov, A. Gavrilov, and D. Ritter, "75 GHz InP HBT distributed amplifier with record figures of merit and low power dissipation," IEEE Transactions on Electron Devices, Vol. 53, 2006-2008, 2006.

3. Kraus, S., D. Cohen-Elias, S. Cohen, A. Gavrilov, O. Karni, Y. Swirski, G. Eisenstein, and D. Ritter, "High-gain top illuminated optoelectronic integrated receiver," 19th International Conference on Indium Phosphide and Related Materials, 77-80, May 14--18, 2007.

4. Scott, J., K. Ghorbani, A. Mitchell, M. Austin, and L. Bui, "Multi-wavelength variable drive-voltage modulator for use in high dynamic range photonic links," Proceedings of Asia-Pacific Microwave Conference, 2007.

5. Boglione, L., "Power and linearity performance of a cascode InGaP/GaAs HBT distributed amplifier for instrument applications," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 2217-2220, 2003.
doi:10.1109/MWSYM.2003.1210605

6. Koh, M. and G. Ellis, "Broadband linearization of InGaP/GaAs HBT power amplifier," Proceedings of European Microwave Conference, 878-881, Sep. 2010.

7. Taher, S. and J. Scott, "A comparison of InP HBT transimpedance amplifier topologies for high dynamic range photonic links," Proceedings of Asia-Pacific Microwave Conference, 2009.

8. Kobayashi, K. W., R. Esfandiari, and A. K. Oki, "A novel HBT distributed amplifier design topology based on attenuation compensation techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2583-2589, 1994.
doi:10.1109/22.339800

9. Kim, T. and K. Yang, "A new large-signal InP/InGaAs Single HBT model including self-heating and impact ionization effects," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, 2141-2144, 2002.

10. Sewiolo, B., D. Kissinger, G. Fischer, and R. Weigel, "A high-gain high-linearity distributed amplifier for ultra-wideband-applications using a low cost SiGe BiCMOS technology," IEEE 10th Annual Wireless and Microwave Technology Conference, 2009.

11. Walker, J., "Some observations on the design and performance of distributed amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 164-168, 1992.
doi:10.1109/22.108338

12. Fraysse, J. P., J. P. Viaud, P. Q. R. Campovecchio, M. Auxemery, and R. Quere, "A 2 W, high efficiency, 2--8 GHz, cascode HBT MMIC power distributed amplifier," 2000 IEEE MTT-S Microwave Symposium Digest, Vol. 1, 529-532, 2000.

13. Minghao, K., G. A. Ellis, and T. C. Soon, "Effects of output low impedance termination to linearity of GaAs HBT power amplifier," 2010 International Conference on Intelligent and Advanced Systems (ICIAS), 1-4, June 15--17, 2010.

14. Ruan, Y., Y.-H. Liu, L. Chen, and Z.-S. Lai, "A 2.4 GHz fully-integrated SiGe BiCMOS power amplifier," Journal of Electronics and Information Technology, Vol. 33, No. 12, 3035-3039, Dec. 2011.

15. Ciccognani, W., E. Limiti, P. E. Longhi, C. Mitrano, A. Nanni, and M. Peroni, "An ultra-broadband robust LNA for defence applications in AlGaN/GaN technology," IEEE IMS Dig., Anaheim, CA, May 2010.

16. Pengelly, R., S. Sheppard, T. Smith, B. Pribble, S. Wood, and C. Platis, "Commercial GaN devices for switching and low-noise applications," CS MANTECH Conference, Palm Springs, CA, May 16--19, 2011.

17. Lee, C.-I., W.-C. Lin, and J.-M. Lin, "Low-power and high-linearity SiGe HBT low-noise amplifier using IM3 cancellation technique," Microelectronic Engineering, Vol. 91, No. 3, 59-63, 2011.

18. Pan, H.-Y. M. and L. E. Larson, "An improved broadband high linearity SiGe HBT differential amplifier," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 8, 1685-1694, Aug. 2011.
doi:10.1109/TCSI.2010.2103191

19. Maazouzi, L. E., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient Pa for WiMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602