PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 38 > pp. 119-125


By Y. Ranga, L. Matekovits, A. R. Weily, and K. P. Esselle

Full Article PDF (447 KB)

An ultra-wideband (UWB) antenna with a novel multi-layer frequency selective surface (FSS) reflector is presented. A significant enhancement in the gain has been achieved in a low profile design while maintaining the excellent impedance bandwidth of the UWB antenna. The average peak gain of the antenna has been increased from 4 dBi to 9.3 dBi as a consequence of the use of the FSS reflector. More importantly the gain variation within the frequency range from 3 GHz to 15 GHz is only ±0.5 dB. This is a significant improvement from ±2 dB gain variation of the UWB slot antenna without the reflector. This optimized FSS reflector provides the exibility of mounting a planar antenna close to conducting bodies, including screens and cases.

Y. Ranga, L. Matekovits, A. R. Weily, and K. P. Esselle, "A Constant Gain Ultra-Wideband Antenna with a Multi-Layer Frequency Selective Surface," Progress In Electromagnetics Research Letters, Vol. 38, 119-125, 2013.

1. Allen, B., M. Dohler, E. E. Okon, W. Q. Malik, A. K. Brown, and D. J. Edwards, Ultra-wideband Antennas and Propagation for Communication, Radar and Imaging, Wiley-Interscience, 2007.

2. Ray, K. P. and Y. Ranga, "Ultrawideband printed elliptical monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1189-1192, 2007.

3. Ray, K. P. and Y. Ranga, "Ultra-wideband printed modified triangular monopole antenna," Electronic Letters, Vol. 42, No. 19, 1081-1082, 2006.

4. Chen, H. D., J. S. Chen, and J.-N. Li, "Ultra-wideband square-slot antenna," Microwave Optical Technology Letters, Vol. 48, No. 3, 500-502, 2006.

5. Engheta, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Exploration, Wiley-IEEE Press, 2006.

6. Munk, B. A., Frequency Selective Surfaces: Theory and Design,, 1st Ed., Wiley-Interscience, 2000.

7. Erdemli, Y. E., K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 12, 1716-1724, 2002.

8. Pasian, M., S. Monni, A. Neto, M. Ettorre, and G. Gerini, "Frequency selective surfaces for extended bandwidth backing reflector functions," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 43-50, 2010.

9. Moustafa, M. and B. Jecko, "Design and realization of a wide-band EBG antenna based on FSS and operating in the Ku-band," International Journal of Antennas and Propagation, Article ID 139069, 2010.

10. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface re°ector for ultra-wideband antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 219-222, 2011.

11. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer Jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.

12. Zhang, J.-C., Y.-Z. Yin, and .-P. Ma, "Design of narrow band-pass frequency selective surface for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.

13. Jha, K. R., G. Singh, and R. Jyoti, "A simple synthesis technique of single-square-loop frequency selective surface," Progress In Electromagnetics Research B, Vol. 45, 165-185, 2012.

© Copyright 2010 EMW Publishing. All Rights Reserved