Vol. 44
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-12-19
Quantum Analysis of a Modified Caldirola-Kanai Oscillator Model for Electromagnetic Fields in Time-Varying Plasma
By
Progress In Electromagnetics Research Letters, Vol. 44, 71-79, 2014
Abstract
Quantum properties of a modified Caldirola-Kanai oscillator model for propagating electromagnetic fields in plasma medium are investigated using invariant operator method. As a modification, ordinary exponential function in the Hamiltonian is replaced with a modified exponential function, so-called the q-exponential function. The system described in terms of q-exponential function exhibits nonextensivity. Characteristics of the quantized fields, such as quantum electromagnetic energy, quadrature fluctuations, and uncertainty relations are analyzed in detail in the Fock state, regarding the q-exponential function. We confirmed, from their illustrations, that these quantities oscillate with time in some cases. It is shown from the expectation value of energy operator that quantum energy of radiation fields dissipates with time, like a classical energy, on account of the existence of non-negligible conductivity in media.
Citation
Jeong Ryeol Choi, Samira Lakehal, Mustapha Maamache, and Salah Menouar, "Quantum Analysis of a Modified Caldirola-Kanai Oscillator Model for Electromagnetic Fields in Time-Varying Plasma," Progress In Electromagnetics Research Letters, Vol. 44, 71-79, 2014.
doi:10.2528/PIERL13061601
References

1. Lewis, Jr., H. R. and W. B. Riesenfeld, "An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field," J. Math. Phys., Vol. 10, No. 8, 1458-1473, 1969.
doi:10.1063/1.1664991

2. Choi, J. R., "Nonclassical properties of superpositions of coherent and squeezed states for electromagnetic fields in time-varying media," Quantum Optics and Laser Experiments, 25-48, InTech 2012.

3. Kalluri, D. K., "Electromagnetics of Time Varying Complex Media," CRC Press, 2010.

4. Heald, M. A. and C. B. Wharton, "Plasma Diagnostics with Microwaves," Wiley, 1965.

5. Caldirola, P., "Forze non conservative nella meccanica quantistica," Il Nuovo Cimento, Vol. 18, No. 9, 393-400, 1941.
doi:10.1007/BF02960144

6. Kanai, E., "On the quantization of the dissipative systems," Prog. Theor. Phys., Vol. 3, No. 4, 440-442, 1950.
doi:10.1143/ptp/3.4.440

7. Tsallis, C., "What are the numbers that experiments provide?," Quimica Nova, Vol. 17, 468-471, 1994.

8. Ozeren, S. F., "The effect of nonextensivity on the time evolution of the SU(1,1) coherent states driven by a damped harmonic oscillator," Physica A, Vol. 337, No. 1--2, 81-88, 2004.
doi:10.1016/j.physa.2004.01.038

9. Liu, Z. P., L. N. Guo, and J. L. Du, "Nonextensivity and the q-distribution of a relativistic gas under an external electromagnetic field," Chin. Sci. Bull., Vol. 56, No. 34, 3689-3692, 2011.
doi:10.1007/s11434-011-4750-2

10. Pedrosa, I. A. and A. Rosas, "Electromagnetic field quantization in time-dependent linear media ," Phys. Rev. Lett., Vol. 103, No. 1, 010402, 2009.
doi:10.1103/PhysRevLett.103.010402

11. Maamache, M., J.-P. Provost, and G. Vallee, "Unitary equivalence and phase properties of the quantum parametric and generalized harmonic oscillators," Phys. Rev. A, Vol. 59, No. 3, 1777-1780, 1999.
doi:10.1103/PhysRevA.59.1777

12. Tsallis, C., "Possible generalization of Boltzmann-Gibbs statistics," J. Stat. Phys., Vol. 52, No. 1--2, 479-487, 1988.
doi:10.1007/BF01016429

13. Albuquerque, E. L. and M. G. Cottam, "Theory of elementary excitations in quasiperiodic structures ," Phys. Rep., Vol. 376, No. 4--5, 225-337, 2003.
doi:10.1016/S0370-1573(02)00559-8

14. Anastasiadis, A. D. and G. D. Magoulas, "Particle swarms and nonextensive statistics for nonlinear optimisation," The Open Cybernetics and Systemics Journal, Vol. 2, 173-179, 2008.
doi:10.2174/1874110X00802010173

15. McHarris, Wm. C., "Nonlinearities in quantum mechanics," Braz. J. Phys., Vol. 35, No. 2B, 380-384, 2005.
doi:10.1590/S0103-97332005000300003

16. Marchiolli, M. A. and S. S. Mizrahi, "Dissipative mass-accreting quantum oscillator," J. Phys. A: Math. Gen., Vol. 30, No. 8, 2619-2635, 1997.
doi:10.1088/0305-4470/30/8/011

17. Choi, J. R., "The decay properties of a single-photon in linear media," Chin. J. Phys., Vol. 41, No. 3, 257-266, 2003.

18. Fujii, K. and T. Suzuki, "An approximate solution of the Jaynes-Cummings model with dissipation," Int. J. Geom. Methods Mod. Phys., Vol. 8, No. 8, 1799-1814, 2011.
doi:10.1142/S0219887811005944

19. Fujii, K. and T. Suzuki, "An approximate solution of the Jaynes-Cummings model with dissipation II: Another approach," Int. J. Geom. Methods Mod. Phys., Vol. 9, No. 4, 1250036, 2012.
doi:10.1142/S0219887812500363

20. Buzek, V., A. Vidiella-Barranco, and P. L. Knight, "Superpositions of coherent states: Squeezing and dissipation," Phys. Rev. A, Vol. 45, No. 9, 6570-6585, 1992.
doi:10.1103/PhysRevA.45.6570

21. Ji, Y.-H. and M.-S. Lei, "Squeezing e®ects of a mesoscopic dissipative coupled circuit," Int. J. Theor. Phys., Vol. 41, No. 7, 1346-1346, 2002.
doi:10.1023/A:1019659101209

22. Weiss, U., "Quantum Dissipative Systems," World Scientific, 2008.

23. Garashchuk, S., V. Dixit, B. Gu, and J. Mazzuca, "The Schrodinger equation with friction from the quantum trajectory perspective ," J. Chem. Phys., Vol. 138, No. 5, 054107, 2013.
doi:10.1063/1.4788832

24. Stannigel, K., P. Rabl, and P. Zoller, "Driven-dissipative preparation of entangled states in cascaded quantum-optical networks," New J. Phys., Vol. 14, No. 6, 063014, 2012.
doi:10.1088/1367-2630/14/6/063014

25. Choi, J. R., "Quantum unitary transformation approach for the evolution of dark energy," Dark Energy --- Current Advances and Ideas, 117-134, 2009.

26. Choi, J. R., "SU(1,1) Lie algebraic approach for the evolution of the quantum inflationary universe ," Phys. Dark Univ., Vol. 2, No. 1, 41-49, 2013.
doi:10.1016/j.dark.2013.02.002