Vol. 58

Latest Volume
All Volumes
All Issues
2016-01-27

Low Side Lobe Level Multilayer Antenna for Wireless Applications

By Safa Nassr Nafea, Alyani Ismail, and Raja Syamsul Azmir Raja Abdullah
Progress In Electromagnetics Research Letters, Vol. 58, 105-111, 2016
doi:10.2528/PIERL15112202

Abstract

A low cost and easy fabrication multilayer antenna for wireless applications was presented to cover the industrial, scientific, and medical ISM band of (5.725-5.875) GHz with a gain of 11.7 dB. The antenna was composed of a feeding patch fabricated on a Rogers RT/Duroid 5880 substrate, and three superstrate layers of Rogers RO3006 were located above the feeding patch at a specific height for each layer. The superstrate layers were added to enhance the bandwidth and gain of the antenna and reduce its side-lobe level and return loss. The simulated and measured results of the operating frequency, return loss, bandwidth, and gain for the antenna were presented. CST Microwave Studio was used in this design's simulation.

Citation


Safa Nassr Nafea, Alyani Ismail, and Raja Syamsul Azmir Raja Abdullah, "Low Side Lobe Level Multilayer Antenna for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 58, 105-111, 2016.
doi:10.2528/PIERL15112202
http://www.jpier.org/PIERL/pier.php?paper=15112202

References


    1. Jothi Chitra, R. and V. Nagarajan, "Double L-slot microstrip patch antenna array for WiMAX and WLAN applications," Comput. Electr. Eng., Vol. 39, No. 3, 1026-1041, 2013.
    doi:10.1016/j.compeleceng.2012.11.024

    2. Mak, C., H. Wong, and K. Luk, "High-gain and wide-band single-layer patch," IEEE Trans. Veh. Technol., Vol. 54, No. 1, 33-40, 2005.
    doi:10.1109/TVT.2004.838899

    3. Kim, J. W., T. H. Jung, H. K. Ryu, J. M. Woo, C. S. Eun, and D. K. Lee, "Compact multiband microstrip antenna using inverted-L- and T-shaped parasitic elements," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1299-1302, 2013.
    doi:10.1109/LAWP.2013.2283796

    4. Munir, A., G. Petrus, and H. Nusantara, "Multiple slots technique for bandwidth enhancement of microstrip rectangular patch antenna," 2013 Int. Conf. Qual. Res. QiR 2013 - Conjunction with ICCS 2013 2nd Int. Conf. Civ. Sp., 150-154, 2013.

    5. Sun, X. B., M. Y. Cao, J. J. Hao, and Y. J. Guo, "A rectangular slot antenna with improved bandwidth," AEU - Int. J. Electron. Commun., Vol. 66, No. 6, 465-466, 2012.
    doi:10.1016/j.aeue.2011.10.008

    6. Kamakshi, K., A. Singh, M. Aneesh, and J. Ansari, "Novel design of microstrip antenna with improved bandwidth," Int. J. Microw. Sci. Technol., Vol. 2014, 7 Pages, 2014.

    7. Wu, C. M., Y. L. Chen, and W. C. Liu, "A compact ultrawideband slotted patch antenna for wireless USB dongle application," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 596-599, 2012.

    8. Chen, W., G. Wang, and C. Zhang, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2176-2179, 2009.
    doi:10.1109/TAP.2009.2021974

    9. Awida, M. H., S. H. Suleiman, and A. E. Fathy, "Substrate-integrated cavity-backed patch arrays: A low-cost approach for bandwidth enhancement," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1155-1163, 2011.
    doi:10.1109/TAP.2011.2109681

    10. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
    doi:10.2528/PIER07061909

    11. Lotfi-Neyestanak, A. A., "Ultra wideband rose leaf microstrip patch antenna," Progress In Electromagnetics Research, Vol. 86, 155-168, 2008.
    doi:10.2528/PIER08090201

    12. Mekki, A. S., M. N. Hamidon, A. Ismail, and A. R. H. Alhawari, "Gain enhancement of a microstrip patch antenna using a reflecting layer," Int. J. Antennas Propag., Vol. 2015, 7, 2015.

    13. Guha, D., S. Chattopadhya, and J. Y. Siddiqui, "Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna," IEEE Antennas Propag. Mag., Vol. 52, No. 3, 92-95, 2010.
    doi:10.1109/MAP.2010.5586581

    14. Liu, Y., X. Chen, X. Ren, and C. Liu, "High-gain planar array designed by using fragmented slots," Int. J. RF Microw., 382-388, 2013.

    15. Nayan, M., M. F. Jamlos, and M. A. Jamlos, "Circularly polarized MIMO antenna array for point-to-point communication," Microw. Opt. Technol. Lett., Vol. 54, No. 1, 2781-2784, 2015.

    16. Lee, R. and K.-F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 5, 1990.
    doi:10.1109/8.56971

    17. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, 2012.
    doi:10.1109/TAP.2012.2213231

    18. Dutta, K., D. Guha, C. Kumar, and Y. Antar, "New approach in designing resonance cavity high-gain antenna using nontransparent conducting sheet as the superstrate," Radio Sci., Vol. 63, No. 6, 2807-2813, 2015.

    19. Vaidya, A. R., R. K. Gupta, and S. K. Mishra, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 431-434, 2014.
    doi:10.1109/LAWP.2014.2308926

    20. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate," Microw. Opt. Technol. Lett., Vol. 54, No. 6, 2781-2784, 2012.
    doi:10.1002/mop.26818

    21. Mukherjee, R. K. G. J., "Effect of superstrate material on a high-gain antenna using array of parasitic patches," Microw. Opt. Technol. Lett., Vol. 52, No. 1, 82-88, 2010.
    doi:10.1002/mop.24850

    22. Gupta, R. K. and G. Kumar, "High-gain multilayer 2×2 antenna array for wireless applications," Microw. Opt. Technol. Lett., Vol. 50, No. 11, 2781-2784, 2008.

    23. Vandenbosch, G. A. E. and A. van de Capelle, "Study of gain enhancement method for microstrip antennas using moment method," IEEE Trans. Antennas Propag., Vol. 43, No. 3, 227-231, 1995.
    doi:10.1109/8.371990