Vol. 93
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-08-18
An Oscillator Type Active Integrated Antenna Using GaN /AlGaN HEMT with Maximum Power at Second Harmonic
By
Progress In Electromagnetics Research Letters, Vol. 93, 21-26, 2020
Abstract
In this paper an oscillator-type GaN HEMT based active integrated antenna is proposed where the active part of the circuit and patch antenna are in series. The patch antenna is designed to offer optimum impedance at second harmonic to generate maximum power at second harmonic and overall negative resistance at fundamental frequency for sustained oscillation. The circuit has been designed, fabricated and characterized. The fundamental frequency of oscillation of this circuit is 1.5 GHz. This circuit has Effective Isotropic Radiated Power (EIRP) of 32.1 dBm at 3 GHz. Power at fundamental frequency is suppressed due to mismatch of input impedance of patch antenna and deviation from optimum load required for maximum radiation at fundamental frequency. The power radiated at fundamental frequency is 15.7 dB lower than the power radiated at second harmonic. This design technique can be used for radiating useful high power much beyond the cutoff frequency of the transition of active device.
Citation
Rakhi Kumari, Ananjan Basu, and Shiban Kishen Koul, "An Oscillator Type Active Integrated Antenna Using GaN /AlGaN HEMT with Maximum Power at Second Harmonic," Progress In Electromagnetics Research Letters, Vol. 93, 21-26, 2020.
doi:10.2528/PIERL20070205
References

1. Raab, F. H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, 814-826, 2002.
doi:10.1109/22.989965

2. Mishra, U. K., P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, Vol. 90, No. 6, 1022-1031, Jun. 2002.
doi:10.1109/JPROC.2002.1021567

3. Van Leeuwen, J. (ed.), Computer Science Today. Recent Trends and Developments. Lecture Notes in Computer Science, Vol. 1000, Springer-Verlag, Berlin Heidelberg, New York, 1995.

4. Kaper, V. S., et al., "High-power monolithic AlGaN/GaN HEMT oscillator," IEEE Journal of Solid-State Circuits, Vol. 38, No. 9, 1457-1461, Sept. 2003.
doi:10.1109/JSSC.2003.815934

5. Micovic, M., et al., "GaN MMIC technology for microwave and millimeter-wave applications," IEEE Compound Semiconductor Integrated Circuit Symposium, 2005, CSIC’05, 173-176, Palm Springs, CA, USA, 2005.

6. Hasegawa, N. and N. Shinohara, "C-band active-antenna design for effective integration with a GaN amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 4976-4983, Dec. 2017.
doi:10.1109/TMTT.2017.2721406

7. Pengelly, R. S., S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, "A review of GaN on SiC high electron-mobility power transistors and MMICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1764-1783, Jun. 2012.
doi:10.1109/TMTT.2012.2187535

8. Kumari, R., A. Basu, and S. K. Koul, "Development of GaN HEMT based high power active integrated antenna," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), 1-4, Kolkata, India, 2018.

9. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 937-944, Mar. 2002.
doi:10.1109/22.989976

10. Qian, Y. and T. Itoh, "Progress in active integrated antennas and their applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, 1891-1900, Nov. 1998.
doi:10.1109/22.734506

11. Choi, D.-H. and S.-O. Park, "Active integrated antenna using T-shaped microstrip-line-fed slot antenna," 2005 IEEE Antennas and Propagation Society International Symposium, 213-216, Washington, DC, 2005.

12. Qin, Y., S. Gao, and A. Sambell, "Broadband high-efficiency circularly polarized active antenna and array for RF front-end application," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 7, 2910-2916, Jul. 2006.
doi:10.1109/TMTT.2006.877437

13. Lee, J., C. T. M. Wu, and T. Itoh, "A power efficient active integrated antenna," Microwave and Opt. Technol. Letters, Vol. 55, No. 6, 1240-1243, 2013.
doi:10.1002/mop.27543

14. Ooi, S. F., S. K. Lee, A. Sambell, E. Korolkiewicz, and S. Scott, "A new approach to the design of a compact high efficiency active integrated antenna," Microwave and Optical Technology Letters, Vol. 50, No. 3, 585-589, Mar. 2008.
doi:10.1002/mop.23156

15. Wandinger, L. and V. Nalbandian, "Millimeter-wave power combiner using quasi-optical techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, 189-193, Feb. 1983.
doi:10.1109/TMTT.1983.1131456

16. Ibrahim, S. H., "Design and analysis considerations of 4GHz integrated antenna with negative resistance oscillator," Progress In Electromagnetics Research B, Vol. 13, 111-131, 2009.
doi:10.2528/PIERB08122901

17. Choi, D. H. and S. O. Park, "Active integrated antenna using a T-shaped microstrip coupled patch antenna," Microw. Opt. Technol. Lett., Vol. 44, No. 5, 434-436, Mar. 2005.
doi:10.1002/mop.20658

18. Ma, T., Y. Chang, H. N. Chu, and W. Liao, "Frequency reconfigurable self-oscillating active integrated antenna using metamaterial resonators and slotted ground radiator," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, Krakow, Poland, 2019.

19. Cai, M., X. Li, and G. Yang, "C-band self-oscillating active integrated antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1209-1210, San Diego, CA, 2017.

20. Wu, C. and T. Ma, "Self-oscillating semi-ring active integrated antenna with frequency reconfigurability and voltage-controllability," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3880-3885, Jul. 2013.
doi:10.1109/TAP.2013.2256095

21. Liu, Y. and H. Chang, "Design of a V-band active integrated antenna (AIA) with voltage controlled oscillator," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, 2012.