Vol. 93

Latest Volume
All Volumes
All Issues
2020-09-24

Wideband Triple Resonance Patch Antenna for 5G Wi-Fi Spectrum

By Arvind Kumar, Ayman Abdulhadi Althuwayb, and Mu'ath Al-Hasan
Progress In Electromagnetics Research Letters, Vol. 93, 89-97, 2020
doi:10.2528/PIERL20071605

Abstract

This study presents a triple resonance microstrip slotted antenna element for 5G (5.15-5.875 Wi-Fi band) applications. This antenna constitutes a rectangular patch stimulated with an I-shaped slot and two shorted metallic vias. This arrangement results in an enhancement of the bandwidth. The antenna features a wide impedance bandwidth (IBW) matching due to triple resonances when being properly excited by coax-probe feed. The IBW of the antenna ranges from 5-6 GHz band with three resonances at around 5.2, 5.5, and 5.8 GHz. Finally, the antenna is fabricated and measured, which displays a -10 dB IBW of 5.04-6.05 GHz (18.2%) featuring stable radiation and gain (around 7 dBi). Moreover, the measurements are in good agreement with simulations. On the account of the single-layered dielectric, this antenna can be easily mounted with active electronics.

Citation


Arvind Kumar, Ayman Abdulhadi Althuwayb, and Mu'ath Al-Hasan, "Wideband Triple Resonance Patch Antenna for 5G Wi-Fi Spectrum," Progress In Electromagnetics Research Letters, Vol. 93, 89-97, 2020.
doi:10.2528/PIERL20071605
http://www.jpier.org/PIERL/pier.php?paper=20071605

References


    1. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., Vol. 31, No. 16, 1310-1312, Aug. 1995.
    doi:10.1049/el:19950950

    2. Kumar, A. and M. A. Al-Hasan, "A coplanar-waveguide-fed planar integrated cavity backed slotted antenna array using TE33 mode," International Journal of RF and Microwave Computer-Aided Engineering, e22344, Jun. 30, 2020.

    3. Lee, K. F. and K. M. Luk, Microstrip Patch Antennas, Imperial College Press, London, England, 2011.

    4. Kumar, A. and S. Raghavan, "Planar cavity-backed self-diplexing antenna using two-layered structure," Progress In Electromagnetics Research Letters, Vol. 76, 91-96, 2018.

    5. Kumar, A., "Design of self-quadruplexing antenna using substrate-integrated waveguide technique," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2687-2689, Dec. 2019.
    doi:10.1002/mop.31952

    6. Divya, C., "SIW cavity-backed 24 inclined-slots antenna for ISM band application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22160, May 2020.

    7. Chaturvedi, D. and S. Raghavan, "SRR-loaded metamaterial-inspired electrically-small monopole antenna," Progress In Electromagnetics Research C, Vol. 81, 11-19, 2018.
    doi:10.2528/PIERC17101202

    8. Kandwal, A. and S. K. Khah, "A novel design of gap-coupled sectoral patch antenna," IEEE Antennas Wirel. Propagat. Lett., Vol. 12, 674-677, 2013.
    doi:10.1109/LAWP.2013.2264103

    9. Rowe, W. S. T. and B. Waterhouse, "Investigation into the performance of proximity coupled stacked patches," IEEE Trans. Antennas Propagat., Vol. 54, No. 6, 1693-1698, 2006.
    doi:10.1109/TAP.2006.875462

    10. Sun, W., Y. Li, Z. Zhang, and Z. Feng, "Broadband and low-profile microstrip antenna using strip-slot hybrid structure," IEEE Antennas Wirel. Propagat. Lett., Vol. 16, 3118-3121, 2017.
    doi:10.1109/LAWP.2017.2763987

    11. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-haped slot for car-to-car and WLAN communications," IEEE Trans. Vehicular Technol., Vol. 65, No. 3, 1130-1136, 2016.
    doi:10.1109/TVT.2015.2409886

    12. Liu, J., Q. Xue, H. Wong, and H. W. Lai, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Trans. Antennas Propagat., Vol. 61, No. 1, 11-18, 2013.
    doi:10.1109/TAP.2012.2214996

    13. Liu, J. and Q. Xue, "Broadband long rectangular patch antenna with high gain and vertical polarization," IEEE Trans. Antennas Propagat., Vol. 61, No. 2, 539-546, Feb. 2013.
    doi:10.1109/TAP.2012.2224838

    14. Wang, J., Q. Liu, and L. Zhu, "Bandwidth enhancement of a differential-fed equilateral triangular patch antenna via loading of shorting posts," IEEE Trans. Antennas Propagat., Vol. 65, No. 1, 36-43, 2017.
    doi:10.1109/TAP.2016.2630660

    15. Wu, T. L., Y. M. Pan, P. F. Hu, and S. Y. Zheng, "Design of a low profile and compact omnidirectional filtering patch antenna," IEEE Access, Vol. 5, 1083-1089, 2017.
    doi:10.1109/ACCESS.2017.2651143

    16. Shi, Y., J. Liu, and Y. Long, "Wideband triple- and quad-resonance substrate integrated waveguide cavity-backed slot antennas with shorting vias," IEEE Trans. Antennas Propagat., Vol. 65, No. 11, 5768-5775, Nov. 1, 2017.
    doi:10.1109/TAP.2017.2755118

    17. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture coupled grid-slotted patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3325-3329, Jul. 2015.
    doi:10.1109/TAP.2015.2429741

    18. Da Xu, K., H. Xu, Y. Liu, J. Li, and Q. H. Liu, "Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement," IEEE Access, Vol. 6, 11624-11633, 2018.

    19. Kumar, A. and S. Raghavan, "Bandwidth enhancement of substrate integrated waveguide cavity-backed bow-tie-complementary-ring-slot antenna using a shorted-via," Defence Science Journal, Vol. 68, No. 2, 197-202, Mar. 13, 2018.
    doi:10.14429/dsj.68.11827

    20. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

    21. Kumar, A., "Wideband circular cavity-backed slot antenna with conical radiation patterns," Microwave and Optical Technology Letters, Vol. 62, No. 6, 2390-2397, Jun. 2020.
    doi:10.1002/mop.32316

    22. Liu, N. W., L. Zhu, W. W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Trans. Antennas Propagat., Vol. 65, No. 3, 1055-1062, Jan. 24, 2017.
    doi:10.1109/TAP.2017.2657486

    23. Chaturvedi, D. and S. Raghavan, "Wideband HMSIW-based slotted antenna for wireless fidelity application," IET Microwaves, Antennas & Propagation, Vol. 13, No. 2, 258-262, Jan. 9, 2019.
    doi:10.1049/iet-map.2018.5110