PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 1 > pp. 31-43

NEURAL FREQUENCY SWEEPER FOR ACCELERATING S-PARAMETERS CALCULATION OF PLANAR MICROWAVE STRUCTURES

By E. A. Soliman and M. S. Ibrahim

Full Article PDF (167 KB)

Abstract:
This paper presents a new frequency-sweep approach for the efficient calculation of S-parameters of planar microwave structures. The approach is based on approximating the frequency dependence of the real and imaginary parts of the S-parameters using neural networks. Due to its superior performance, radial basis functions neural network (RBF-NN) is adopted. A limited number of frequency samples are used to train the RBF-NN. Then, the trained RBF-NN is capable of providing a smooth frequency response with very high accuracy in a fraction of a second. The proposed method is applied to a number of planar microwave structures such as: Patch antenna with an inset feed, band-rejection filter, and branch-line coupler. According to the presented results, a speed factor of at least 10 is measured, and a maximum percentage error of 3.29% is recorded.

Citation:
E. A. Soliman and M. S. Ibrahim, "Neural Frequency Sweeper for Accelerating S-Parameters Calculation of Planar Microwave Structures," Progress In Electromagnetics Research M, Vol. 1, 31-43, 2008.
doi:10.2528/PIERM08010702

References:
1. Maren, A., C. Harston, and R. Pap, Handbook of Neural Computing Applications, Academic Press, 1990.

2. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.

3. Watson, P. and K. C. Gupta, "EM-ANN models for microstrip vias and interconnects in dataset circuits," IEEE Trans. Microwave Theory Tech., Vol. 44, 2495-2503, Dec. 1996.
doi:10.1109/22.554584

4. Soliman, E. A., M. H. Bakr, and N. K. Nikolova, "Modeling of microstrip lines using neural networks — Applications to the design and analysis of distributed microstrip circuits," Int. J. RF and Microwave Computer-Aided Eng., Vol. 14, 166-173, March 2004.
doi:10.1002/mmce.10127

5. Guney, K., C. Yildiz, S. Kays, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

6. Zaabab, A. H., Q.-J. Zhang, and M. Nakhla, "A neural network approach to circuit optimization and statistical design," IEEE Trans. Microwave Theory Tech., Vol. 43, 1349-1358, June 1995.
doi:10.1109/22.390193

7. Mishra, R. K. and A. Patnaik, "Neural network-based CAD model for the design of square-patch antennas," IEEE Trans. Antennas Propagat., Vol. 46, 1890-1891, Dec. 1998.
doi:10.1109/8.743842

8. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240

9. El-Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "Performance of radial basis function networks for direction of arrival estimation with antenna array ," IEEE Trans. Antennas Propagat., Vol. 45, 1611-1617, Nov. 1997.
doi:10.1109/8.650072

10. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

11. Zhao, Q. and Z. Bao, "Radar target recognition using a radial basis function," Neural Networks, Vol. 9, 709-720, April 1996.
doi:10.1016/0893-6080(96)00088-3

12. Washington , G., "Aperture antenna shape prediction by feed forward neural networks," IEEE Trans. Antennas Propagat., Vol. 45, 683-688, April 1997.
doi:10.1109/8.564094

13. Rekanos, I. T., "Inverse scattering of dielectric cylinders by using radial basis function neural networks ," Radio Science, Vol. 36, 841-849, Sept. 2001.
doi:10.1029/2000RS002545

14. Ayestaran, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, 2201-2213, 2006.
doi:10.1163/156939306779322594

15. Ayestaran, R. G., J. Laviada, and F. Las-Heras, "Synthesis of passive-dipole arrays with a genetic-neural hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 20, 2123-2135, 2006.
doi:10.1163/156939306779322549

16. Ayestaran, R. G., F. Las-Heras, and J. A. Martinez, "Non uniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Appls, Vol. 21, 1001-1011, 2007.

17. Soliman, E. A., M. H. Bakr, and N. K. Nikolova, "Neural Networks — Method of Moments (NN-MoM) for the efficient filling of the coupling matrix," IEEE Transactions on Antennas and Propagation, Vol. 52, 1521-1529, June 2004.
doi:10.1109/TAP.2004.829846

18. Soliman, E. A., M. A. El-Gamal, and A. K. Abdelmageed, "Neural network model for the efficient calculation of Green's functions in layered media ," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 13, 128-135, March 2003.
doi:10.1002/mmce.10066

19. Ling, F., D. Jiao, and J.-M. Jin, "Efficient electromagnetic modeling of microstrip structures in multilayer media," IEEE Trans. Microwave Theory Tech., Vol. 47, 1810-1818, Sept. 1999.
doi:10.1109/22.788516

20. Newman, E. H., "Generation of wide-band data from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propagat., Vol. 36, 1820-1824, Dec. 1988.
doi:10.1109/8.14404

21. Virga, K. and Y. Rahmat-Samii, "Efficient wide-band evaluation of mobile communications antennas using [Z ] or [ Y ] matrix interpolation with the method of moments," IEEE Trans. Antennas Propagat., Vol. 47, 65-76, Jan. 1999.
doi:10.1109/8.752990

22. Yeo, J. and R. Mittra, "An algorithm for interpolating the frequency variations of method-of-moments matrices arising in the analysis of planar microstrip structures," IEEE Trans. Microwave Theory Tech., Vol. 51, 1018-1025, March 2003.
doi:10.1109/TMTT.2003.808703

23. Soliman, E. A., "Rapid frequency sweep technique for MoM planar solvers," IEE Proceedings Microwaves, Antennas & Propagation, Vol. 151, 277-282, Aug. 2004.
doi:10.1049/ip-map:20040646

24. MATLAB, version 7.0, The MathWorks Inc., 2004.

25. Jokinen, P. A., "Neural networks with dynamic capacity allocation and quadratic function neurons," Proc. of NEURO-Nimes 90, Nimes, France, 1990.

26. ADS/Momentum, version 4.7, Agilent Technologies, 2002.


© Copyright 2010 EMW Publishing. All Rights Reserved